期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于GJO特征量优选的AO-RF的变压器故障诊断模型 被引量:2
1
作者 叶育林 刘森 +6 位作者 黄松 韩晓慧 杜振斌 李彬 吕杰 薛杨 赵春琳 《高压电器》 CAS CSCD 北大核心 2024年第5期99-107,共9页
在变压器故障诊断过程中,进行合理的特征优选,将有助于提高诊断模型的诊断精度,为此,文中提出了一种基于金豺优化算法(golden Jackal optimization,GJO)特征量优选与AO-RF的变压器故障诊断模型。首先,采用GJO对构建的21维变压器油中溶... 在变压器故障诊断过程中,进行合理的特征优选,将有助于提高诊断模型的诊断精度,为此,文中提出了一种基于金豺优化算法(golden Jackal optimization,GJO)特征量优选与AO-RF的变压器故障诊断模型。首先,采用GJO对构建的21维变压器油中溶解气体特征量进行优选;然后,根据GJO得到的特征优选结果,采用天鹰算法(aquila optimizer,AO)优化随机森林(random forest,RF)的变压器故障诊断模型对变压器故障进行诊断,并与不同特征量、不同故障诊断模型的诊断结果进行了对比。实验结果表明:GJO优选特征量相比21维原始特征、三比值法、无编码比值法以及AO优选特征量的故障诊断准确率可提高1.12%~25.78%,kappa系数可提高0.02~0.24;AO-RF故障诊断模型较RF、SVM、ELM、SSA-RF、WOA-RF、GJO-RF模型的诊断准确率可提高1.84%~15.86%,kappa系数可提高0.02~0.16,验证了所提方法的有效性和准确性。 展开更多
关键词 变压器 故障诊断 金豺算法 随机森林 天鹰算法
下载PDF
基于RF特征优选的WOA-SVM变压器故障诊断 被引量:47
2
作者 安国庆 史哲文 +3 位作者 马世峰 韩晓慧 杜振斌 赵春琳 《高压电器》 CAS CSCD 北大核心 2022年第2期171-178,共8页
为进一步提高变压器传统故障诊断方法的准确率,提出了一种基于随机森林(RF)特征优选,结合鲸鱼算法(WOA)优化支持向量机(SVM)的变压器故障诊断方法。该方法首先利用5种常见油中溶解气体构建24维待选特征集合,其次利用RF算法中MDA指标对... 为进一步提高变压器传统故障诊断方法的准确率,提出了一种基于随机森林(RF)特征优选,结合鲸鱼算法(WOA)优化支持向量机(SVM)的变压器故障诊断方法。该方法首先利用5种常见油中溶解气体构建24维待选特征集合,其次利用RF算法中MDA指标对特征进行排序,通过序列反向搜索法优选出11维DGA特征量作为输入以消除冗余特征,最后将WOA算法用于SVM惩罚因子和核参数的优化,进而实现故障诊断。仿真结果表明,优选出的特征组合可有效提高诊断准确率,WOA-SVM故障诊断模型较PSO-SVM、GA-SVM,在诊断时间和准确率方面更具优势,验证了所提方法的可行性和有效性。 展开更多
关键词 变压器 故障诊断 特征优选 随机森林 鲸鱼优化算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部