期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进灰狼优化算法的区域监测机器人路径规划 被引量:20
1
作者 李靖 杨帆 《科学技术与工程》 北大核心 2020年第15期6122-6129,共8页
为了解决大任务量作业监测中机器人路径规划问题,提出了一种区域监测的机器人路径规划算法。模拟大任务量监测真实环境进行问题建模。针对传统灰狼优化算法求解模型时全局搜索能力差且易陷入局部最优解的问题,提出了一种改进的灰狼优化... 为了解决大任务量作业监测中机器人路径规划问题,提出了一种区域监测的机器人路径规划算法。模拟大任务量监测真实环境进行问题建模。针对传统灰狼优化算法求解模型时全局搜索能力差且易陷入局部最优解的问题,提出了一种改进的灰狼优化算法。引入Logistic混沌映射,以加强初始化种群的多样性;引入一种控制参数的自适应调整策略,以平衡灰狼优化算法的搜索能力和开发能力;引入静态加权平均权重策略,更新种群位置,加快收敛速度。将机器人载电量与路径长度短作为约束,引入K-means算法进行任务聚类,通过改进灰狼优化算法对模型进行离线求解以规划出路径,将大任务量监测作业自动转换成分时分步作业。实验结果表明:通过国际通用6个基准函数进行测试,改进的灰狼优化算法在收敛速度、搜索精度及稳定性上均有明显提高。通过50任务点与100任务点作业场景对机器人路径规划模型进行算法仿真,验证了算法的真实有效性,且任务量越大模型优越性越好,路径缩短比例越高。 展开更多
关键词 灰狼优化算法 改进灰狼优化算法 区域监测 路径规划 权重策略 LOGISTIC混沌映射 K-MEANS算法
下载PDF
区域多任务安全隐患排除的机器人调度策略 被引量:5
2
作者 李靖 杨帆 《电讯技术》 北大核心 2020年第1期97-105,共9页
针对灰狼优化算法易陷入局部最优且单一算法不易解决障碍物空间多机器人隐患搜排的调度问题,提出了一种分步引导式多机器人安全隐患协同排除调度策略。首先引入非线性收敛因子调整策略和静态加权平均权重策略改进灰狼优化算法以避免算... 针对灰狼优化算法易陷入局部最优且单一算法不易解决障碍物空间多机器人隐患搜排的调度问题,提出了一种分步引导式多机器人安全隐患协同排除调度策略。首先引入非线性收敛因子调整策略和静态加权平均权重策略改进灰狼优化算法以避免算法陷入局部最优;随后通过改进的灰狼优化算法先后两次求解遍历顺序,引导机器人规划搜索路径与排除隐患点路径;最后在领航者-跟随者模型的基础上多机器人编队与队形变换避障,逐一到达隐患点位置实现多机器人的调度策略。通过国际通用6个基准函数进行测试,改进的灰狼优化算法在收敛速度、搜索精度及稳定性上均有明显提高,验证了区域多任务安全隐患排除的分步引导式多机器人协同调度策略的有效性。 展开更多
关键词 多机器人 安全隐患排除 调度策略 路径规划 灰狼优化算法算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部