为了进一步降低园区综合能源系统(park-level integrated energy system,PIES)碳排放量,优化热电联产(combined heat and power,CHP)机组出力的灵活性,提出一种考虑改进阶梯型碳交易和CHP热电灵活输出的PIES低碳经济调度策略。首先,将...为了进一步降低园区综合能源系统(park-level integrated energy system,PIES)碳排放量,优化热电联产(combined heat and power,CHP)机组出力的灵活性,提出一种考虑改进阶梯型碳交易和CHP热电灵活输出的PIES低碳经济调度策略。首先,将遗传算法与模糊控制相结合,设计一种遗传模糊碳交易参数优化器,从而对现有阶梯型碳交易机制进行改进,实现该机制参数的自适应变化;其次,在传统CHP中加入卡琳娜(Kalina)循环与电锅炉(electricboiler,EB),构造CHP热电灵活输出模型,以同时满足电、热负荷的不同需求;然后,提出一种柔性指标——电、热输出占比率,进而计算出电、热输出占比率区间,以衡量CHP运行灵活性;最后,将改进阶梯型碳交易机制和CHP热电灵活输出模型协同优化,以系统运行成本和碳交易成本之和最小为目标,构建PIES低碳经济优化模型。算例分析表明,所提策略可有效降低经济成本和碳排放量,同时还可扩展CHP灵活输出调节范围,能够为PIES低碳经济调度提供参考。展开更多
为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦...为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦合特性。提出了一种基于多变量相空间重构(multivariate phase space reconstruction,MPSR)和径向基函数神经网络(radial basis function neural network,RBFNN)相结合的IES超短期电冷热负荷预测模型。首先,分析了IES中能源子系统之间的耦合关系,运用Pearson相关性分析定量描述多元负荷和气象特征的相关性。然后,采用C-C法对时间序列进行MPSR以进一步挖掘电冷热负荷和气象特征在时间上的耦合特性。最后,利用RBFNN模型对电冷热负荷间耦合关系进行学习并预测。实验结果表明,所提方法有效挖掘并学习电冷热负荷在时间上的耦合特性,且在不同样本容量下具有良好且稳定的预测效果。展开更多
文摘为了进一步降低园区综合能源系统(park-level integrated energy system,PIES)碳排放量,优化热电联产(combined heat and power,CHP)机组出力的灵活性,提出一种考虑改进阶梯型碳交易和CHP热电灵活输出的PIES低碳经济调度策略。首先,将遗传算法与模糊控制相结合,设计一种遗传模糊碳交易参数优化器,从而对现有阶梯型碳交易机制进行改进,实现该机制参数的自适应变化;其次,在传统CHP中加入卡琳娜(Kalina)循环与电锅炉(electricboiler,EB),构造CHP热电灵活输出模型,以同时满足电、热负荷的不同需求;然后,提出一种柔性指标——电、热输出占比率,进而计算出电、热输出占比率区间,以衡量CHP运行灵活性;最后,将改进阶梯型碳交易机制和CHP热电灵活输出模型协同优化,以系统运行成本和碳交易成本之和最小为目标,构建PIES低碳经济优化模型。算例分析表明,所提策略可有效降低经济成本和碳排放量,同时还可扩展CHP灵活输出调节范围,能够为PIES低碳经济调度提供参考。
文摘为解决能源危机问题,提高能源利用率,综合能源系统(integrated energy system,IES)成为发展创新型能源系统的重要方向。准确的多元负荷预测对IES的经济调度和优化运行有着重要的影响,而借助混沌理论能够进一步挖掘IES多元负荷潜在的耦合特性。提出了一种基于多变量相空间重构(multivariate phase space reconstruction,MPSR)和径向基函数神经网络(radial basis function neural network,RBFNN)相结合的IES超短期电冷热负荷预测模型。首先,分析了IES中能源子系统之间的耦合关系,运用Pearson相关性分析定量描述多元负荷和气象特征的相关性。然后,采用C-C法对时间序列进行MPSR以进一步挖掘电冷热负荷和气象特征在时间上的耦合特性。最后,利用RBFNN模型对电冷热负荷间耦合关系进行学习并预测。实验结果表明,所提方法有效挖掘并学习电冷热负荷在时间上的耦合特性,且在不同样本容量下具有良好且稳定的预测效果。