采用机械合金化方法制备Mg_3Sb_2金属间化合物,研究了摩尔比为3:2的Mg、Sb混合粉末的机械合金化过程,通过改变球磨转速和球料比找到制备Mg_3Sb_2的最佳工艺参数,对球磨后的粉末进行了X射线衍射(XRD)、差示扫描量热法(DSC)、扫描电镜(SEM...采用机械合金化方法制备Mg_3Sb_2金属间化合物,研究了摩尔比为3:2的Mg、Sb混合粉末的机械合金化过程,通过改变球磨转速和球料比找到制备Mg_3Sb_2的最佳工艺参数,对球磨后的粉末进行了X射线衍射(XRD)、差示扫描量热法(DSC)、扫描电镜(SEM)测试分析。结果表明,机械合金化方法可制备出细小的Mg_3Sb_2粉末,最佳球磨工艺参数是500 r/min的球磨转速、15:1的球料比。由热力学计算可知,Mg-Sb二元合成反应的绝热温度Tad=2149.5 K。DSC分析知,随球磨时间的延长,燃烧反应的临界温度会下降。经Kissinger公式计算原始混合粉末的激活能为94.45 k J/mol,球磨2 h之后的激活能为82.23 k J/mol,说明球磨使粉末内部产生大量晶体缺陷和位错等,体系能量增加,反应激活能降低,从而促进合金化的进程。展开更多
二硫化钼在可充电电池等能源存储领域具有广阔的应用前景,然而其电子导电性较差、充放电过程中易粉化和团聚等问题限制了其发展。采用水热法一步合成了液态合金(LM)和二硫化钼(MoS_(2))的复合负极材料(LM@MoS_(2))。通过XRD、SEM等综合...二硫化钼在可充电电池等能源存储领域具有广阔的应用前景,然而其电子导电性较差、充放电过程中易粉化和团聚等问题限制了其发展。采用水热法一步合成了液态合金(LM)和二硫化钼(MoS_(2))的复合负极材料(LM@MoS_(2))。通过XRD、SEM等综合表征方法对复合材料的结构和形态特性进行了研究。结果表明,液态合金通过静电吸附和配位键等方式有效结合于MoS_(2),形成稳定的复合结构。此外,复合材料具有较高的可变形性和化学稳定性,促进了电极材料裂纹表面的修复,减少了内部氧化还原反应,提高了锂离子电池的循环稳定性。当LM与MoS_(2)质量比为2:1时,复合材料表现出最佳性能。在0.1 A·g^(−1)的电流密度下,经过100次循环,复合材料的比容量稳定在656.1 m A·h·g^(−1),容量保持率达74.3%,该研究为锂离子电池电极的裂纹自修复提供了新思路。展开更多
文摘采用机械合金化方法制备Mg_3Sb_2金属间化合物,研究了摩尔比为3:2的Mg、Sb混合粉末的机械合金化过程,通过改变球磨转速和球料比找到制备Mg_3Sb_2的最佳工艺参数,对球磨后的粉末进行了X射线衍射(XRD)、差示扫描量热法(DSC)、扫描电镜(SEM)测试分析。结果表明,机械合金化方法可制备出细小的Mg_3Sb_2粉末,最佳球磨工艺参数是500 r/min的球磨转速、15:1的球料比。由热力学计算可知,Mg-Sb二元合成反应的绝热温度Tad=2149.5 K。DSC分析知,随球磨时间的延长,燃烧反应的临界温度会下降。经Kissinger公式计算原始混合粉末的激活能为94.45 k J/mol,球磨2 h之后的激活能为82.23 k J/mol,说明球磨使粉末内部产生大量晶体缺陷和位错等,体系能量增加,反应激活能降低,从而促进合金化的进程。
文摘二硫化钼在可充电电池等能源存储领域具有广阔的应用前景,然而其电子导电性较差、充放电过程中易粉化和团聚等问题限制了其发展。采用水热法一步合成了液态合金(LM)和二硫化钼(MoS_(2))的复合负极材料(LM@MoS_(2))。通过XRD、SEM等综合表征方法对复合材料的结构和形态特性进行了研究。结果表明,液态合金通过静电吸附和配位键等方式有效结合于MoS_(2),形成稳定的复合结构。此外,复合材料具有较高的可变形性和化学稳定性,促进了电极材料裂纹表面的修复,减少了内部氧化还原反应,提高了锂离子电池的循环稳定性。当LM与MoS_(2)质量比为2:1时,复合材料表现出最佳性能。在0.1 A·g^(−1)的电流密度下,经过100次循环,复合材料的比容量稳定在656.1 m A·h·g^(−1),容量保持率达74.3%,该研究为锂离子电池电极的裂纹自修复提供了新思路。