压环是爆炸成型弹丸(Explosively Formed Projectile,EFP)装药结构中紧固装药和药型罩不可缺少的部件。为研究其在爆炸驱动过程中对药型罩形成EFP特征的影响,选取典型球缺型紫铜药型罩基准装药结构,采用有限元分析软件的拉格朗日、任意...压环是爆炸成型弹丸(Explosively Formed Projectile,EFP)装药结构中紧固装药和药型罩不可缺少的部件。为研究其在爆炸驱动过程中对药型罩形成EFP特征的影响,选取典型球缺型紫铜药型罩基准装药结构,采用有限元分析软件的拉格朗日、任意拉格朗日-欧拉、光滑粒子流法(Smooth Particle Hydrodynamics,SPH)及有限元法(Finite Element Method,FEM)-SPH自适应耦合等算法分别建模和仿真计算,对各算法计算获得的EFP速度和形态特征与脉冲X光摄影拍摄的EFP图像进行对比,采用FEM-SPH算法获得高精度的EFP成型仿真结果。针对该基准装药结构,在压环与药型罩质量比M_(R)/M_(L)≤0.2范围,进行矩形及非矩形压环参数(如轴向、径向厚度及截面形状)和材料对EFP初速、质量转换比、长径比和气动特性(密实度及迎风面积)参数影响的仿真计算。研究结果表明:矩形截面压环的轴向、径向厚度及材料参数对EFP初速影响在3%以内;对EFP质量转换比呈递减趋势(最大可降低12.6%);对EFP长径比呈递减趋势(最大可降低19.2%);密实度呈递增趋势,钢环较无压环,EFP的密实度提高32.6%;迎风面积呈递减趋势。以上结果表明考虑压环有利于EFP翻转成型和形成更密实的杆式EFP,并减小其迎风阻力。所得研究结果可为EFP装药结构的优化设计提供指导。展开更多
为获得爆炸冲击波下人员胸部损伤机理,借助高保真数字假人模型(Total Human Model for Safety,THUMS),使用Load_Blast_Enhanced方法与任意拉格朗日欧拉(Arbitrary Lagrange-Euler,ALE)方法构建了人体-爆炸流场数值模型,对爆炸冲击波下...为获得爆炸冲击波下人员胸部损伤机理,借助高保真数字假人模型(Total Human Model for Safety,THUMS),使用Load_Blast_Enhanced方法与任意拉格朗日欧拉(Arbitrary Lagrange-Euler,ALE)方法构建了人体-爆炸流场数值模型,对爆炸冲击波下人体胸部的损伤情况开展数值计算,结合爆炸事故验证模型的有效性;基于冲击波峰值超压准则和Axelsson损伤模型判别6个工况下人员伤情等级,发现仅在TNT当量1500 g、爆距4 m时人员有轻伤风险。基于皮肤、骨骼、心肺的动态响应细致分析人员各组织器官的损伤类型,揭示了人员轻伤时的损伤模式及爆炸冲击波的致伤机理,研究结果可为爆炸致伤人员损伤评估的研究及相关防护装备的设计提供参考。展开更多
文摘压环是爆炸成型弹丸(Explosively Formed Projectile,EFP)装药结构中紧固装药和药型罩不可缺少的部件。为研究其在爆炸驱动过程中对药型罩形成EFP特征的影响,选取典型球缺型紫铜药型罩基准装药结构,采用有限元分析软件的拉格朗日、任意拉格朗日-欧拉、光滑粒子流法(Smooth Particle Hydrodynamics,SPH)及有限元法(Finite Element Method,FEM)-SPH自适应耦合等算法分别建模和仿真计算,对各算法计算获得的EFP速度和形态特征与脉冲X光摄影拍摄的EFP图像进行对比,采用FEM-SPH算法获得高精度的EFP成型仿真结果。针对该基准装药结构,在压环与药型罩质量比M_(R)/M_(L)≤0.2范围,进行矩形及非矩形压环参数(如轴向、径向厚度及截面形状)和材料对EFP初速、质量转换比、长径比和气动特性(密实度及迎风面积)参数影响的仿真计算。研究结果表明:矩形截面压环的轴向、径向厚度及材料参数对EFP初速影响在3%以内;对EFP质量转换比呈递减趋势(最大可降低12.6%);对EFP长径比呈递减趋势(最大可降低19.2%);密实度呈递增趋势,钢环较无压环,EFP的密实度提高32.6%;迎风面积呈递减趋势。以上结果表明考虑压环有利于EFP翻转成型和形成更密实的杆式EFP,并减小其迎风阻力。所得研究结果可为EFP装药结构的优化设计提供指导。
文摘为获得爆炸冲击波下人员胸部损伤机理,借助高保真数字假人模型(Total Human Model for Safety,THUMS),使用Load_Blast_Enhanced方法与任意拉格朗日欧拉(Arbitrary Lagrange-Euler,ALE)方法构建了人体-爆炸流场数值模型,对爆炸冲击波下人体胸部的损伤情况开展数值计算,结合爆炸事故验证模型的有效性;基于冲击波峰值超压准则和Axelsson损伤模型判别6个工况下人员伤情等级,发现仅在TNT当量1500 g、爆距4 m时人员有轻伤风险。基于皮肤、骨骼、心肺的动态响应细致分析人员各组织器官的损伤类型,揭示了人员轻伤时的损伤模式及爆炸冲击波的致伤机理,研究结果可为爆炸致伤人员损伤评估的研究及相关防护装备的设计提供参考。