期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SVM增量学习算法的煤矿高压断路器故障模式识别方法 被引量:11
1
作者 耿蒲龙 宋建成 +3 位作者 赵钰 高云广 郑丽君 呼守信 《煤炭学报》 EI CAS CSCD 北大核心 2017年第8期2198-2204,共7页
高压断路器故障模式的准确识别是矿井电网智能化发展过程中的重要支撑环节。针对高压断路器故障数据不易获取且故障样本较少的问题,提出了一种支持向量机与增量学习算法相结合的故障识别方法,确定了以断路器控制回路电流信号、电压信号... 高压断路器故障模式的准确识别是矿井电网智能化发展过程中的重要支撑环节。针对高压断路器故障数据不易获取且故障样本较少的问题,提出了一种支持向量机与增量学习算法相结合的故障识别方法,确定了以断路器控制回路电流信号、电压信号以及分合闸振动信号为状态监测量,模拟了弹簧松动、铁芯卡涩、供电异常与线圈老化4种常见故障,提取了故障特征量并建立了故障数据样本与增量学习数据样本,采用支持向量机增量学习算法训练得到了故障识别模型,并利用新增数据样本对其进行了验证。结果表明:支持向量机增量学习算法可准确识别上述4种常见故障,并可以通过对新增样本的不断学习进一步提高识别精度。 展开更多
关键词 高压断路器 特征提取 故障模式识别 支持向量机 增量学习算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部