近些年,我国成功开发了以煤为原料的甲醇制烯烃(Methanol to Olefins,MTO)生产工艺和技术,带动煤制烯烃产业的快速发展,保障了国家能源安全。流化床式反应器是MTO工业生产的核心反应装置,通过计算流体力学(Computational Fluid Dynamics...近些年,我国成功开发了以煤为原料的甲醇制烯烃(Methanol to Olefins,MTO)生产工艺和技术,带动煤制烯烃产业的快速发展,保障了国家能源安全。流化床式反应器是MTO工业生产的核心反应装置,通过计算流体力学(Computational Fluid Dynamics,CFD)方法深入认知MTO流化床内的流化特性规律具有重要的意义,它可以从理论上更加准确地指导MTO流化床的优化与放大。本工作采用基于宏观-亚网格层次的气泡EMMS曳力和传统TFM耦合计算的多尺度CFD方法,对工业尺度MTO流化床内的多相流化行为进行了三维数值模拟。模拟结果表明,该多尺度CFD方法考虑了气泡结构对气-固相间曳力的影响,能较准确地预测MTO流化床内轴向颗粒浓度的"S-型"分布规律,且得到实验数据的验证;所预测的径向颗粒浓度分布呈现出经典的"环-核"分布规律,气体/颗粒的轴向时均速度在径向上的分布也与实际情况相互佐证,表明该多尺度CFD方法显著改善了基于均匀曳力的传统TFM对于宏观流场的预测能力。下一步工作将多尺度CFD方法拓展应用于MTO流化床优化放大及反应特性的研究。展开更多
文摘近些年,我国成功开发了以煤为原料的甲醇制烯烃(Methanol to Olefins,MTO)生产工艺和技术,带动煤制烯烃产业的快速发展,保障了国家能源安全。流化床式反应器是MTO工业生产的核心反应装置,通过计算流体力学(Computational Fluid Dynamics,CFD)方法深入认知MTO流化床内的流化特性规律具有重要的意义,它可以从理论上更加准确地指导MTO流化床的优化与放大。本工作采用基于宏观-亚网格层次的气泡EMMS曳力和传统TFM耦合计算的多尺度CFD方法,对工业尺度MTO流化床内的多相流化行为进行了三维数值模拟。模拟结果表明,该多尺度CFD方法考虑了气泡结构对气-固相间曳力的影响,能较准确地预测MTO流化床内轴向颗粒浓度的"S-型"分布规律,且得到实验数据的验证;所预测的径向颗粒浓度分布呈现出经典的"环-核"分布规律,气体/颗粒的轴向时均速度在径向上的分布也与实际情况相互佐证,表明该多尺度CFD方法显著改善了基于均匀曳力的传统TFM对于宏观流场的预测能力。下一步工作将多尺度CFD方法拓展应用于MTO流化床优化放大及反应特性的研究。