Dynamic Global Vegetation Models(DGVM)are powerful tools for studying complicated ecosystem processes and global changes.This review article synthesizes the developments and applications of the Integrated Biosphere Si...Dynamic Global Vegetation Models(DGVM)are powerful tools for studying complicated ecosystem processes and global changes.This review article synthesizes the developments and applications of the Integrated Biosphere Simulator(IBIS),a DGVM,over the past two decades.IBIS has been used to evaluate carbon,nitrogen,and water cycling in terrestrial ecosystems,vegetation changes,land-atmosphere interactions,land-aquatic system integration,and climate change impacts.Here we summarize model development work since IBIS v2.5,covering hydrology(evapotranspiration,groundwater,lateral routing),vegetation dynamics(plant functional type,land cover change),plant physiology(phenology,photosynthesis,carbon allocation,growth),biogeochemistry(soil carbon and nitrogen processes,greenhouse gas emissions),impacts of natural disturbances(drought,insect damage,fire)and human induced land use changes,and computational improvements.We also summarize IBIS model applications around the world in evaluating ecosystem productivity,carbon and water budgets,water use efficiency,natural disturbance effects,and impacts of climate change and land use change on the carbon cycle.Based on this review,visions of future cross-scale,cross-landscape and cross-system model development and applications are discussed.展开更多
基金The Key Project of National Natural Science Foundation of China(41930651)The National Natural Science Foundation of China(41871334)。
文摘Dynamic Global Vegetation Models(DGVM)are powerful tools for studying complicated ecosystem processes and global changes.This review article synthesizes the developments and applications of the Integrated Biosphere Simulator(IBIS),a DGVM,over the past two decades.IBIS has been used to evaluate carbon,nitrogen,and water cycling in terrestrial ecosystems,vegetation changes,land-atmosphere interactions,land-aquatic system integration,and climate change impacts.Here we summarize model development work since IBIS v2.5,covering hydrology(evapotranspiration,groundwater,lateral routing),vegetation dynamics(plant functional type,land cover change),plant physiology(phenology,photosynthesis,carbon allocation,growth),biogeochemistry(soil carbon and nitrogen processes,greenhouse gas emissions),impacts of natural disturbances(drought,insect damage,fire)and human induced land use changes,and computational improvements.We also summarize IBIS model applications around the world in evaluating ecosystem productivity,carbon and water budgets,water use efficiency,natural disturbance effects,and impacts of climate change and land use change on the carbon cycle.Based on this review,visions of future cross-scale,cross-landscape and cross-system model development and applications are discussed.