软件系统的实体演化耦合分析有助于共同变更预测、软件供应链风险识别、代码漏洞溯源、缺陷预测、架构问题定位等分析活动.两个代码实体之间存在演化耦合(evolutionary coupling)是指在软件修订历史中,这对实体倾向于共同变更(共变).已...软件系统的实体演化耦合分析有助于共同变更预测、软件供应链风险识别、代码漏洞溯源、缺陷预测、架构问题定位等分析活动.两个代码实体之间存在演化耦合(evolutionary coupling)是指在软件修订历史中,这对实体倾向于共同变更(共变).已有的演化耦合分析方法难以准确检测软件维护历史中频繁发生的、有“距离”的共变.为了解决这一问题,提出了基于关联规则挖掘、情节挖掘、潜在语义索引模型相结合的演化耦合分析方法(association rule,MINEPI and LSI based method,AR-MIM),以挖掘有“距离”的共同变更关系.实验收集了58个Python项目、242074条训练数据、330660条ground truth的数据集,与已有的4种baseline方法进行了比较,验证了AR-MIM的效果.结果表明:在预测共同变更候选项场景上,AR-MIM的准确性、召回率、F1分数均优于已有方法.展开更多
自然语言到结构化查询语言(natural language to structured query language,NL2SQL)任务旨在将自然语言询问转化为数据库可执行的结构化查询语言(structured query language,SQL)语句。本文提出了一种辅助任务增强的中文跨域NL2SQL算法...自然语言到结构化查询语言(natural language to structured query language,NL2SQL)任务旨在将自然语言询问转化为数据库可执行的结构化查询语言(structured query language,SQL)语句。本文提出了一种辅助任务增强的中文跨域NL2SQL算法,其核心思想是通过在解码阶段添加辅助任务以结合原始模型来进行多任务训练,提升模型的准确率。辅助任务的设计是通过将数据库模式建模成图,预测自然语言询问与数据库模式图中的节点的依赖关系,显式地建模自然语言询问和数据库模式之间的依赖关系。针对特定的自然语言询问,通过辅助任务的提升,模型能够更好地识别数据库模式中哪些表/列对预测目标SQL更有效。在中文NL2SQL数据集DuSQL上的实验结果表明,添加辅助任务后的算法相对于原始模型取得了更好的效果,能够更好地处理跨域NL2SQL任务。展开更多
近年来,以ChatGPT为代表的能够适应复杂场景、并能满足人类的各种应用需求为目标的文本生成算法模型成为学术界与产业界共同关注的焦点.然而,ChatGPT等大规模语言模型(Large Language Model,LLM)高度忠实于用户意图的优势隐含了部分的...近年来,以ChatGPT为代表的能够适应复杂场景、并能满足人类的各种应用需求为目标的文本生成算法模型成为学术界与产业界共同关注的焦点.然而,ChatGPT等大规模语言模型(Large Language Model,LLM)高度忠实于用户意图的优势隐含了部分的事实性错误,而且也需要依靠提示内容来控制细致的生成质量和领域适应性,因此,研究以内在质量约束为核心的文本生成方法仍具有重要意义.本文在近年来关键的内容生成模型和技术对比研究的基础上,定义了基于内在质量约束的文本生成的基本形式,以及基于“信、达、雅”的6种质量特征;针对这6种质量特征,分析并总结了生成器模型的设计和相关算法;同时,围绕不同的内在质量特征总结了多种自动评价和人工评价指标与方法.最后,本文对文本内在质量约束技术的未来研究方向进行了展望.展开更多
文摘软件系统的实体演化耦合分析有助于共同变更预测、软件供应链风险识别、代码漏洞溯源、缺陷预测、架构问题定位等分析活动.两个代码实体之间存在演化耦合(evolutionary coupling)是指在软件修订历史中,这对实体倾向于共同变更(共变).已有的演化耦合分析方法难以准确检测软件维护历史中频繁发生的、有“距离”的共变.为了解决这一问题,提出了基于关联规则挖掘、情节挖掘、潜在语义索引模型相结合的演化耦合分析方法(association rule,MINEPI and LSI based method,AR-MIM),以挖掘有“距离”的共同变更关系.实验收集了58个Python项目、242074条训练数据、330660条ground truth的数据集,与已有的4种baseline方法进行了比较,验证了AR-MIM的效果.结果表明:在预测共同变更候选项场景上,AR-MIM的准确性、召回率、F1分数均优于已有方法.
文摘自然语言到结构化查询语言(natural language to structured query language,NL2SQL)任务旨在将自然语言询问转化为数据库可执行的结构化查询语言(structured query language,SQL)语句。本文提出了一种辅助任务增强的中文跨域NL2SQL算法,其核心思想是通过在解码阶段添加辅助任务以结合原始模型来进行多任务训练,提升模型的准确率。辅助任务的设计是通过将数据库模式建模成图,预测自然语言询问与数据库模式图中的节点的依赖关系,显式地建模自然语言询问和数据库模式之间的依赖关系。针对特定的自然语言询问,通过辅助任务的提升,模型能够更好地识别数据库模式中哪些表/列对预测目标SQL更有效。在中文NL2SQL数据集DuSQL上的实验结果表明,添加辅助任务后的算法相对于原始模型取得了更好的效果,能够更好地处理跨域NL2SQL任务。
文摘近年来,以ChatGPT为代表的能够适应复杂场景、并能满足人类的各种应用需求为目标的文本生成算法模型成为学术界与产业界共同关注的焦点.然而,ChatGPT等大规模语言模型(Large Language Model,LLM)高度忠实于用户意图的优势隐含了部分的事实性错误,而且也需要依靠提示内容来控制细致的生成质量和领域适应性,因此,研究以内在质量约束为核心的文本生成方法仍具有重要意义.本文在近年来关键的内容生成模型和技术对比研究的基础上,定义了基于内在质量约束的文本生成的基本形式,以及基于“信、达、雅”的6种质量特征;针对这6种质量特征,分析并总结了生成器模型的设计和相关算法;同时,围绕不同的内在质量特征总结了多种自动评价和人工评价指标与方法.最后,本文对文本内在质量约束技术的未来研究方向进行了展望.