在众多能量存储和转化器件中,超级电容器由于具有功率密度高、充放电迅速和优异的循环性能的优点而被广泛研究.然而,较低的比容量和能量密度,限制了超级电容作为大尺度能量存储和转化器件的广泛应用.为了提高超级电容器的比容量,需要增...在众多能量存储和转化器件中,超级电容器由于具有功率密度高、充放电迅速和优异的循环性能的优点而被广泛研究.然而,较低的比容量和能量密度,限制了超级电容作为大尺度能量存储和转化器件的广泛应用.为了提高超级电容器的比容量,需要增大电极材料和电解质的接触面积,进而促进电极材料俘获/释放电解质中的粒子(例如电子、离子或者小分子).在此,我们通过简单的水热法联合高温退火实验方案能够大规模制备出镍泡沫支撑的Co_3O_4多孔纳米结构.无需借助导电胶和粘合剂,在集流器镍泡沫上"生长"Co_3O_4多孔纳米结构直接作为超级电容的电极材料.这种多孔纳米结构和一体化设计思路不仅能够有效提高电极的导电性,而且能够有效缩短离子和电子的迁移路径.由于多孔的结构特征和优异的导电性能,Co_3O_4电极表现出超高比容量(在电流密度为2.5 m A·cm^(-2)和5.5 m A·cm^(-2)时,比容量分别为1.87 F·cm(-2)(936 F·g-1)和1.80 F·cm^(-2)(907 F·g-1))、较好的倍率性能(电流密度从2.5 m A·cm^(-2)增大到100 m A·cm^(-2)时,保留其48.37%的初始电容)和超高的循环稳定性(经历4000次电流密度为10 m A·cm^(-2)的循环充放电过程,保留其92.3%的比容量).这种多孔纳米结构和一体化设计思路对设计其他高性能储能器件具有重要的指导意义.展开更多
Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The...Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.展开更多
An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other ...An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other FeOx supported transition metal systems both experimentally and theoretically.However,the FeOx substrate itself(denoted by Fe1/FeOx following the same nomenclature of Pt1/FeOx)as a typical transition metal oxide possesses a very low catalytic activity toward CO oxidation,although it can be viewed as Fe1/FeOx SAC.Here,to understand the catalytic mechanism of FeOx‐based SACs for CO oxidation,we have performed density functional theory calculations on Pt1/FeOx and Fe1/FeOx for CO oxidation to address the differences between these two SACs in terms of the catalytic mechanism of CO oxidation and the chemical behavior of the catalysts.Our calculation results indicated that the catalytic cycle of Fe1/FeOx is much more difficult to accomplish than that of SAC Pt1/FeOx because of a high activation barrier(1.09eV)for regeneration of the oxygen vacancy formed when the second CO2molecule desorbs from the surface.Moreover,density of states and Bader charge analysis revealed differences in the catalytic performance for CO oxidation by the SACs Fe1/FeOx and Pt1/FeOx.This work provides insights into the fundamental interactions between the single‐atom Pt1and FeOx substrate,and the exceptional catalytic performance of this system for CO oxidation.展开更多
文摘在众多能量存储和转化器件中,超级电容器由于具有功率密度高、充放电迅速和优异的循环性能的优点而被广泛研究.然而,较低的比容量和能量密度,限制了超级电容作为大尺度能量存储和转化器件的广泛应用.为了提高超级电容器的比容量,需要增大电极材料和电解质的接触面积,进而促进电极材料俘获/释放电解质中的粒子(例如电子、离子或者小分子).在此,我们通过简单的水热法联合高温退火实验方案能够大规模制备出镍泡沫支撑的Co_3O_4多孔纳米结构.无需借助导电胶和粘合剂,在集流器镍泡沫上"生长"Co_3O_4多孔纳米结构直接作为超级电容的电极材料.这种多孔纳米结构和一体化设计思路不仅能够有效提高电极的导电性,而且能够有效缩短离子和电子的迁移路径.由于多孔的结构特征和优异的导电性能,Co_3O_4电极表现出超高比容量(在电流密度为2.5 m A·cm^(-2)和5.5 m A·cm^(-2)时,比容量分别为1.87 F·cm(-2)(936 F·g-1)和1.80 F·cm^(-2)(907 F·g-1))、较好的倍率性能(电流密度从2.5 m A·cm^(-2)增大到100 m A·cm^(-2)时,保留其48.37%的初始电容)和超高的循环稳定性(经历4000次电流密度为10 m A·cm^(-2)的循环充放电过程,保留其92.3%的比容量).这种多孔纳米结构和一体化设计思路对设计其他高性能储能器件具有重要的指导意义.
文摘Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation.
基金supported by the National Natural Science Foundation of China(21503046,21373206,21203182)the National Basic Research Program of China(2013CB834603)+3 种基金the Natural Science Foundation of Guizhou Province of China(QKJ(2015)2122)Natural Science foundation of Department of Education of Guizhou Province(QJTD(2015)55 and ZDXK(2014)18)the GZEU startup packagethe Open Fund of Shaanxi Key Laboratory of Catalysis to JXL(SXKLC-2017-01)~~
文摘An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other FeOx supported transition metal systems both experimentally and theoretically.However,the FeOx substrate itself(denoted by Fe1/FeOx following the same nomenclature of Pt1/FeOx)as a typical transition metal oxide possesses a very low catalytic activity toward CO oxidation,although it can be viewed as Fe1/FeOx SAC.Here,to understand the catalytic mechanism of FeOx‐based SACs for CO oxidation,we have performed density functional theory calculations on Pt1/FeOx and Fe1/FeOx for CO oxidation to address the differences between these two SACs in terms of the catalytic mechanism of CO oxidation and the chemical behavior of the catalysts.Our calculation results indicated that the catalytic cycle of Fe1/FeOx is much more difficult to accomplish than that of SAC Pt1/FeOx because of a high activation barrier(1.09eV)for regeneration of the oxygen vacancy formed when the second CO2molecule desorbs from the surface.Moreover,density of states and Bader charge analysis revealed differences in the catalytic performance for CO oxidation by the SACs Fe1/FeOx and Pt1/FeOx.This work provides insights into the fundamental interactions between the single‐atom Pt1and FeOx substrate,and the exceptional catalytic performance of this system for CO oxidation.