期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
智能算法优化XGBoost的聚能-爆破装药比冲量预测 被引量:1
1
作者 刘芳 李士伟 +2 位作者 卢熹 郭策安 马元婧 《小型微型计算机系统》 CSCD 北大核心 2024年第5期1076-1082,共7页
为了探索聚能-爆破装药结构、爆破距离等参数与比冲量间的复杂关系,提出一种智能算法优化极端梯度提升(eXtreme Gradient Boosting,XGBoost)的聚能-爆破装药比冲量预测模型.采用相关性分析方法,探寻聚能-爆破装药结构参数、爆破距离参... 为了探索聚能-爆破装药结构、爆破距离等参数与比冲量间的复杂关系,提出一种智能算法优化极端梯度提升(eXtreme Gradient Boosting,XGBoost)的聚能-爆破装药比冲量预测模型.采用相关性分析方法,探寻聚能-爆破装药结构参数、爆破距离参数与比冲量之间的关联程度.使用具有数据并行处理能力和集成学习思想的XGBoost算法,挖掘结构参数、爆破距离参数与比冲量间的潜在非线性关系.基于粒子群算法(Particle Swarm Optimization,PSO)良好的全局搜索能力和蚁群算法(Ant Colony Optimization,ACO)优良的局部搜索能力,设计双智能算法优化XGBoost的融合预测模型PSO-ACO-XGBoost,提高聚能-爆破装药比冲量预测精度.PSO和ACO分别用于搜索XGBoost超参数解空间的全局最优解与局部最优解.实验结果表明,PSO-ACO-XGBoost模型相较于BP、XGBoost、PSO-BP、ACO-XGBoost等其它8种预测模型,在预测精度、拟合程度、速度和稳定性等方面具有最佳性能. 展开更多
关键词 聚能装药 爆破装药 比冲量 极端梯度提升 粒子群算法 蚁群算法
下载PDF
基于PSO-CNN-XGBoost水下柱形装药峰值超压预测 被引量:1
2
作者 刘芳 李士伟 +1 位作者 卢熹 郭策安 《兵工学报》 EI CAS CSCD 北大核心 2024年第5期1602-1612,共11页
为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization,PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extr... 为探索水下柱形装药结构、爆距等参数与水下柱形装药峰值超压的关系,将装药样本数据视为二维数据,建立粒子群优化(Particle Swarm Optimization,PSO)算法、一维卷积神经网络(1D Convolutional Neural Network,1DCNN)和极端梯度提升(Extreme Gradient Boosting,XGBoost)的水下柱形装药峰值超压融合预测算法。采用相关性分析与数据可视化方法,分析装药结构参数、爆距与峰值超压之间的关联关系。设计1DCNN深度网络挖掘不同长径比、爆距等参数与峰值超压之间的纵向时序关系。运用XGBoost算法寻找装药结构参数、爆距与峰值超压之间的横向非线性关系,提升小样本数据的预测精度。使用PSO算法优化1DCNN和XGBoost的超参数,获得最优算法结构。研究结果表明,在包含10种智能算法的对比实验中,PSO-CNN-XGBoost水下柱形装药峰值超压预测算法在精度、稳定性、拟合程度上均高于其他模型。 展开更多
关键词 水下柱形装药 长径比 爆距 峰值超压 粒子群优化算法 一维卷积神经网络 极端梯度提升
下载PDF
基于NanoDet-SimAM小尺寸松材线虫病受害木检测
3
作者 刘芳 姜生伟 +1 位作者 张峻豪 何姗 《沈阳工业大学学报》 CAS 北大核心 2024年第4期428-433,共6页
针对小尺寸松材线虫病受害木检测精度及检测效率低的问题,提出了一种融合深度网络和注意力机制的小尺寸松材线虫智能检测模型。采用无人机(UAV)搭载小型相机在220 m高度拍摄小尺寸松材线虫受害木图像,应用图像旋转、缩放、添加高斯噪声... 针对小尺寸松材线虫病受害木检测精度及检测效率低的问题,提出了一种融合深度网络和注意力机制的小尺寸松材线虫智能检测模型。采用无人机(UAV)搭载小型相机在220 m高度拍摄小尺寸松材线虫受害木图像,应用图像旋转、缩放、添加高斯噪声和模拟光照强度等数据处理方式扩充数据集,设计轻量级深度网络NanoDet和SimAM注意力模块融合模型NanoDet-SimAM对小尺寸松材线虫受害木进行精准检测。结果表明,该模型相较于Faster R-CNN、Yolov4、Yolov5s及NanoDet等检测网络模型,具有更高的检测精度、速度和稳定性。 展开更多
关键词 松材线虫病 目标检测 轻量级网络NanoDet 注意力机制 无参注意力 迁移学习 数据增强 小尺寸
下载PDF
基于改进LSTM的数码雷管模组印刷质量预测
4
作者 许可 高宏宇 +1 位作者 宫华 孙文娟 《沈阳理工大学学报》 CAS 2025年第1期9-18,24,共11页
由于数码雷管模组印刷过程中生产工艺复杂、强时序性等特点,其质量的精准预测已成为提高产品质量管理水平的关键。基于此提出一种改进长短期记忆(long short-term memory,LSTM)网络的数码雷管模组印刷质量预测模型。首先根据数码雷管模... 由于数码雷管模组印刷过程中生产工艺复杂、强时序性等特点,其质量的精准预测已成为提高产品质量管理水平的关键。基于此提出一种改进长短期记忆(long short-term memory,LSTM)网络的数码雷管模组印刷质量预测模型。首先根据数码雷管模组印刷过程提炼机器运行参数、环境参数与检测参数作为印刷产品质量的原始特征,并对关键检测参数进行时序特征重构以增强特征表达能力;其次基于改进的LSTM网络建立数码雷管模组印刷特征提取框架,采用卷积神经网络提取空间特征避免LSTM挖掘高维印刷特征时隐含关系的不足,通过全局注意力机制自适应学习不同时刻印刷特征对印刷产品质量的贡献度,为LSTM提取的深层时序特征分配不同权值;最后以深层特征作为输入,通过全连接网络实现数码雷管模组印刷产品的质量预测。实验结果表明,相较于BP神经网络、门控循环单元网络、LSTM等预测方法,改进的LSTM网络有效提高了数码雷管模组印刷产品质量的预测精度。 展开更多
关键词 模组印刷 质量预测 长短期记忆网络 特征重构
下载PDF
基于改进YOLOv7-DeepSort的红外视频多目标跟踪
5
作者 宫华 张众垚 +1 位作者 胡雨桐 刘芳 《沈阳理工大学学报》 CAS 2024年第6期20-27,共8页
针对红外图像纹理弱及多目标遮挡导致跟踪精度低的问题,构建了基于改进YOLOv7模型和多目标跟踪算法DeepSort的融合红外目标跟踪模型MSB-YOLOv7-DeepSort。采用SE(squeeze and excitation)通道注意力机制和双向特征金字塔网络提高红外目... 针对红外图像纹理弱及多目标遮挡导致跟踪精度低的问题,构建了基于改进YOLOv7模型和多目标跟踪算法DeepSort的融合红外目标跟踪模型MSB-YOLOv7-DeepSort。采用SE(squeeze and excitation)通道注意力机制和双向特征金字塔网络提高红外目标的特征提取质量;利用轻量化网络MobileNetV3替换YOLOv7骨干网络,提升融合模型的推理速度。实验结果表明,MSB-YOLOv7-DeepSort模型在跟踪准确度、跟踪精确度、正确目标跟踪比例和帧率等方面均具有较好的性能。 展开更多
关键词 红外目标跟踪 YOLOv7 轻量化 SE注意力机制 MobileNetV3 双向特征金字塔网络
下载PDF
基于AGEP-DNN的水下聚能装药比冲量预测模型
6
作者 刘芳 郝慧敏 +1 位作者 卢熹 郭策安 《沈阳理工大学学报》 CAS 2024年第2期15-21,28,共8页
聚能装药比冲量是表征水下爆炸中冲击波对目标破坏作用的重要参数。为实现水下聚能装药比冲量智能预测,提出一种自适应基因表达式编程(adaptive gene expression programming, AGEP)优化深度神经网络(deep neural network, DNN)的聚能... 聚能装药比冲量是表征水下爆炸中冲击波对目标破坏作用的重要参数。为实现水下聚能装药比冲量智能预测,提出一种自适应基因表达式编程(adaptive gene expression programming, AGEP)优化深度神经网络(deep neural network, DNN)的聚能装药比冲量预测模型(AGEP-DNN)。考虑装药结构与比冲量数值之间的复杂非线性关系,通过AUTODYN软件建立有限元模型,对水下爆炸过程进行仿真,采用经验公式验证仿真数据的有效性;基于仿真实验数据,设计AGEP算法优化DNN超参数,构建AGEP-DNN模型,对比冲量进行智能预测。实验结果显示,AGEP-DNN聚能装药比冲量预测模型在9种对比智能预测模型中具有最优的预测精度。 展开更多
关键词 聚能装药 比冲量 自适应基因表达式编程 深度神经网络 数值仿真
下载PDF
带运输的混合流水车间调度问题的改进遗传算法
7
作者 许可 叶彩霞 孙文娟 《沈阳理工大学学报》 CAS 2024年第2期7-14,共8页
为实现分布式制造环境中上下游工序和机器间的协同生产,研究了带有运输的混合流水车间调度问题。以包含加工时间、运输时间和加工等待时间的完工时间最小为目标,建立了带有运输约束的混合流水车间调度模型,基于Q-learning设计了改进的... 为实现分布式制造环境中上下游工序和机器间的协同生产,研究了带有运输的混合流水车间调度问题。以包含加工时间、运输时间和加工等待时间的完工时间最小为目标,建立了带有运输约束的混合流水车间调度模型,基于Q-learning设计了改进的遗传算法(QGA)求解该模型。在该算法中,首先基于工件序号设计编码和遗传算子等遗传操作;然后根据种群适应度函数构建种群的状态集合,以交叉概率和变异概率的取值作为动作,以最佳个体适应度和种群平均适应度作为奖励;最后采用Q-learning对交叉和变异参数进行智能调整,提高算法的收敛速度与全局搜索能力。仿真实验结果表明,与改进的遗传算法(GA-TS)相比,本文QGA的最大完工时间平均减少了2.0%,收敛速度提升了18.1%。 展开更多
关键词 混合流水车间调度 运输时间 强化学习 遗传算法
下载PDF
基于DACO-BP的水下聚能装药峰值超压预测 被引量:3
8
作者 刘芳 张峻豪 +1 位作者 卢熹 郭策安 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第6期17-24,102,共9页
为提高水下聚能装药爆炸冲击波参数预测的准确性和稳定性,基于AUTODYN数值仿真软件获取的装药爆炸仿真数据,提出了动态自适应蚁群算法(dynamic adaptive ant colony algorithm,DACO)优化BP(back propagation)神经网络(DACO-BP)的水下聚... 为提高水下聚能装药爆炸冲击波参数预测的准确性和稳定性,基于AUTODYN数值仿真软件获取的装药爆炸仿真数据,提出了动态自适应蚁群算法(dynamic adaptive ant colony algorithm,DACO)优化BP(back propagation)神经网络(DACO-BP)的水下聚能装药峰值超压预测模型。采用梅森旋转算法(mersennetwister,MT)对数据进行随机排序,提升模型对不同数据分布的泛化能力。设计信息素纯增长策略和挥发系数双曲线动态自适应调整策略,改善蚁群算法的全局寻优能力和收敛速度。将DACO算法获得的全局最优解映射到BP神经网络的权值和阈值,提高BP神经网络预测的精度和稳定性能。实验结果表明,动态自适应蚁群优化BP神经网络的水下聚能装药峰值超压预测模型具有良好的有效性、稳定性和可信性。 展开更多
关键词 水下聚能装药 峰值超压预测 数值模拟 BP神经网络 梅森旋转算法 蚁群 动态自适应蚁群
下载PDF
基于博弈建模的地对空防御火力分配策略选择
9
作者 孙文娟 许可 宫华 《沈阳理工大学学报》 CAS 2023年第5期82-87,94,共7页
战场环境复杂多变,如何根据当前态势及火力资源特点,及时有效地对来袭目标进行火力分配,是防空指挥中的关键环节。针对地对空防御问题,考虑对敌方来袭目标的毁伤程度和我方武器资源消耗因素,以最大化总体毁伤概率和最小化使用武器价值... 战场环境复杂多变,如何根据当前态势及火力资源特点,及时有效地对来袭目标进行火力分配,是防空指挥中的关键环节。针对地对空防御问题,考虑对敌方来袭目标的毁伤程度和我方武器资源消耗因素,以最大化总体毁伤概率和最小化使用武器价值为目标建立多目标优化模型。由于优化目标之间存在对武器资源的竞争,以优化目标为博弈方,以决策武器如何攻打来袭目标为策略,建立非合作博弈模型,并结合禁忌搜索技术,设计基于纳什均衡搜索的改进遗传算法(NE-IGA)进行求解。实验结果表明,与求解优化模型的基于禁忌搜索的改进遗传算法(TSGA)及基本遗传算法(GA)相比,博弈模型及其求解算法NE-IGA能够得到更优的分配方案。 展开更多
关键词 地对空防御 火力分配 非合作博弈 纳什均衡 遗传算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部