为了实现对高光谱图像中的目标自动检测,提出了一种基于空间上下文单类分类器的目标检测算法。对所采用的空间与光谱结合的特征、SVDD分类器原理、算法流程等进行研究。首先分析了支持向量数据描述(SVDD,support vector data descripti...为了实现对高光谱图像中的目标自动检测,提出了一种基于空间上下文单类分类器的目标检测算法。对所采用的空间与光谱结合的特征、SVDD分类器原理、算法流程等进行研究。首先分析了支持向量数据描述(SVDD,support vector data description)的单类分类原理。接着,结合高光谱图像特点,介绍了如何利用空间上下文信息和光谱特征作为SVDD分类器输入特征。然后,在分析比较空间光谱结合单类分类器性能的基础上,说明了采用该算法的原理。最后,给出了该算法的具体实现方法。实验结果表明:该方法优于常规的直接利用光谱信息的CEM等算法,在AVIRIS成像的某国外海军基地数据中,检测飞机目标的精度达到了90%以上。基本满足目标检测的稳定可靠、低虚警率、高识别率等要求。展开更多
文摘为了实现对高光谱图像中的目标自动检测,提出了一种基于空间上下文单类分类器的目标检测算法。对所采用的空间与光谱结合的特征、SVDD分类器原理、算法流程等进行研究。首先分析了支持向量数据描述(SVDD,support vector data description)的单类分类原理。接着,结合高光谱图像特点,介绍了如何利用空间上下文信息和光谱特征作为SVDD分类器输入特征。然后,在分析比较空间光谱结合单类分类器性能的基础上,说明了采用该算法的原理。最后,给出了该算法的具体实现方法。实验结果表明:该方法优于常规的直接利用光谱信息的CEM等算法,在AVIRIS成像的某国外海军基地数据中,检测飞机目标的精度达到了90%以上。基本满足目标检测的稳定可靠、低虚警率、高识别率等要求。
基金The National Natural Science Foundation of China(Nos.61302075,61205071,61177079)the Science Foundation of Heilongjiang Province(No.F201009)the China Postdoctoral Science Foundation Funded Project(No.2012M520779)