Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery...Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.展开更多
Background Subacute ruminal acidosis(SARA)is a common metabolic disorder of high yielding dairy cows,and it is associated with dysbiosis of the rumen and gut microbiome and host inflammation.This study evaluated the i...Background Subacute ruminal acidosis(SARA)is a common metabolic disorder of high yielding dairy cows,and it is associated with dysbiosis of the rumen and gut microbiome and host inflammation.This study evaluated the impact of two postbiotics from Saccharomyces cerevisiae fermentation products(SCFP)on rumen liquid associated microbiota of lactating dairy cows subjected to repeated grain-based SARA challenges.A total of 32 rumen cannulated cows were randomly assigned to 4 treatments from 4 weeks before until 12 weeks after parturition.Treatment groups included a Control diet or diets supplemented with postbiotics(SCFPa,14 g/d Original XPC;SCFPb-1X,19 g/d Nutri Tek;SCFPb-2X,38 g/d Nutri Tek,Diamond V,Cedar Rapids,IA,USA).Grain-based SARA challenges were conducted during week 5(SARA1)and week 8(SARA2)after parturition by replacing 20%DM of the base total mixed ration(TMR)with pellets containing 50%ground barley and 50%ground wheat.Total DNA from rumen liquid samples was subjected to V3–V416S r RNA gene amplicon sequencing.Characteristics of rumen microbiota were compared among treatments and SARA stages.Results Both SARA challenges reduced the diversity and richness of rumen liquid microbiota,altered the overall composition(β-diversity),and its predicted functionality including carbohydrates and amino acids metabolic pathways.The SARA challenges also reduced the number of significant associations among different taxa,number of hub taxa and their composition in the microbial co-occurrence networks.Supplementation with SCFP postbiotics,in particular SCFPb-2X,enhanced the robustness of the rumen microbiota.The SCFP supplemented cows had less fluctuation in relative abundances of community members when exposed to SARA challenges.The SCFP supplementation promoted the populations of lactate utilizing and fibrolytic bacteria,including members of Ruminococcaceae and Lachnospiraceae,and also increased the numbers of hub taxa during non-SARA and SARA stages.Supplementation with SCFPb-2X prevented the fluctuations in the abundances of hub taxa that were positively correlated with the acetate concentration,andα-andβ-diversity metrics in rumen liquid digesta.Conclusions Induction of SARA challenges reduced microbiota richness and diversity and caused fluctuations in major bacterial phyla in rumen liquid microbiota in lactating dairy cows.Supplementation of SCFP postbiotics could attenuate adverse effects of SARA on rumen liquid microbiota.展开更多
Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with n...Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with noble metal is highly promising yet still under investigation.Herein,Ru was found as an effective modifier among the screened noble metals(Ru,Pt,Rh,Pd,Au,and Ag)for Ir-Fe/BN(Ir=5 wt%,Fe/Ir=0.25)catalyst in terminal C−O hydrogenolysis of 1,2-butanediol(1,2-BuD)to 2-butanol(2-BuOH).Only trace amount of Ru(up to 0.5 wt%)was effective in terms of high 2-BuOH selectivity(>60%)and activity(about twice).Larger amount of Ru species(3 wt%)highly enhanced the activity but gave low selectivity to 2-BuOH with by-products of terminal C−C bond scission.Optimized catalyst(Ru(0.5)-Ir-Fe/BN)was reusable at least 4 times and gave moderate 2-BuOH yield(47%)in hydrogenolysis of 1,2-BuD.The promoting effect of Ru addition(0.5 wt%)to Ir-Fe/BN on hydrogenolysis of various alcohols was also confirmed.Combining catalytic tests with various characterizations,the promotion mechanism of Ru species in trimetallic catalysts was clarified.The Ru species in Ru(0.5)-Ir-Fe/BN form alloy with Ir and are enriched at the interface with BN surface,and direct interaction between Ru and Fe was not necessary in Ru-Ir-Fe alloy.The interface of Ir and Fe on the surface of Ir-Fe alloy may work as active sites for 1,2-diols to secondary alcohols via direct C−O hydrogenolysis,in which Ru-modified Ir activates H_(2) to form hydride-like species.The activity of Ru species in C−C bond cleavage was highly suppressed due to the direct interaction with Ir species and less exposed to substrate.Larger loading amount of Ru species(3 wt%)led to the formation Ru-rich trimetallic alloy,which further works as active sites for C−C bond scission.展开更多
Background As Holstein calves are susceptible to gastrointestinal disorders during the first week of life,understanding how intestinal immune function develops in neonatal calves is important to promote better intesti...Background As Holstein calves are susceptible to gastrointestinal disorders during the first week of life,understanding how intestinal immune function develops in neonatal calves is important to promote better intestinal health.Feeding probiotics in early life may contribute to host intestinal health by facilitating beneficial bacteria colonization and developing intestinal immune function.The objective of this study was to characterize the impact of early life yeast supplementation and growth on colon mucosa-attached bacteria and host immune function.Results Twenty Holstein bull calves received no supplementation(CON)or Saccharomyces cerevisiae boulardii(SCB)from birth to 5 d of life.Colon tissue biopsies were taken within 2 h of life(D0)before the first colostrum feeding and 3 h after the morning feeding at d 5 of age(D5)to analyze mucosa-attached bacteria and colon transcriptome.Metagenome sequencing showed that there was no difference inαandβdiversity of mucosa-attached bacteria between day and treatment,but bacteria related to diarrhea were more abundant in the colon mucosa on D0 compared to D5.In addition,q PCR indicated that the absolute abundance of Escherichia coli(E.coli)decreased in the colon mucosa on D5 compared to D0;however,that of Bifidobacterium,Lactobacillus,and Faecalibacterium prausnitzii,which could competitively exclude E.coli,increased in the colon mucosa on D5 compared to D0.RNA-sequencing showed that there were no differentially expressed genes between CON and SCB,but suggested that pathways related to viral infection such as“Interferon Signaling”were activated in the colon mucosa of D5 compared to D0.Conclusions Growth affected mucosa-attached bacteria and host immune function in the colon mucosa during the first 5 d of life in dairy calves independently of SCB supplementation.During early life,opportunistic pathogens may decrease due to intestinal environmental changes by beneficial bacteria and/or host immune function.Predicted activation of immune function-related pathways may be the result of host immune function development or suggest other antigens in the intestine during early life.Further studies focusing on the other antigens and host immune function in the colon mucosa are required to better understand intestinal immune function development.展开更多
POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polar...POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polarimeter that is sensitive to soft X-rays(2-10 keV),called low-energy polarization detector.We have developed a new soft X-ray polari-zation detector prototype based on gas microchannel plates(GMCPs)and pixel chips(Topmetal).The GMCPs have bulk resistance,which prevents charging-up effects and ensures gain stability during operation.The detector is composed of low outgassing materials and is gas-sealed using a laser welding technique,ensuring long-term stability.A modulation factor of 41.28%±0.64% is obtained for a 4.5 keV polarized X-ray beam.A residual modulation of 1.96%±0.58% at 5.9 keV is observed for the entire sensitive area.展开更多
Background The study objective was to test the hypothesis that low crude protein(CP)diet with crystalline amino acids(CAA)supplementation improves Lys utilization efficiency for milk production and reduces protein tur...Background The study objective was to test the hypothesis that low crude protein(CP)diet with crystalline amino acids(CAA)supplementation improves Lys utilization efficiency for milk production and reduces protein turnover and muscle protein breakdown.Eighteen lactating multiparous Yorkshire sows were allotted to 1 of 2 isocaloric diets(10.80 MJ/kg net energy):control(CON;19.24%CP)and reduced CP with“optimal”AA profile(OPT;14.00%CP).Sow body weight and backfat were recorded on d 1 and 21 of lactation and piglets were weighed on d 1,14,18,and 21 of lactation.Between d 14 and 18,a subset of 9 sows(CON=4,OPT=5)was infused with a mixed solution of 3-[methyl-2H3]histidine(bolus injection)and[13C]bicarbonate(priming dose)first,then a constant 2-h[13C]bicarbonate infusion followed by a 6-h primed constant[1-13C]lysine infusion.Serial blood and milk sampling were performed to determine plasma and milk Lys enrichment,Lys oxidation rate,whole body protein turnover,and muscle protein breakdown.Results Over the 21-d lactation period,compared to CON,sows fed OPT had greater litter growth rate(P<0.05).Compared to CON,sows fed OPT had greater efficiency of Lys(P<0.05),Lys mammary flux(P<0.01)and whole-body protein turnover efficiency(P<0.05).Compared to CON,sows fed OPT tended to have lower whole body protein breakdown rate(P=0.069).Muscle protein breakdown rate did not differ between OPT and CON(P=0.197).Conclusion Feeding an improved AA balance diet increased efficiency of Lys and reduced whole-body protein turnover and protein breakdown.These results imply that the lower maternal N retention observed in lactating sows fed improved AA balance diets in previous studies may be a result of greater partitioning of AA towards milk rather than greater body protein breakdown.展开更多
Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as ...Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.展开更多
基金the National Research Foundation(NRF)of Korea(No.2022R1A2B5B02002097),funded by the Korea government(MSIT).
文摘Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries.
基金supported by grants from Natural Science and Engineering Research Council(NSERC)of Canada Collaborative Research and Development(CRD)programNSERC Discovery program,Dairy Farmers of Manitoba,and Diamond V,USA,to EK and JCP。
文摘Background Subacute ruminal acidosis(SARA)is a common metabolic disorder of high yielding dairy cows,and it is associated with dysbiosis of the rumen and gut microbiome and host inflammation.This study evaluated the impact of two postbiotics from Saccharomyces cerevisiae fermentation products(SCFP)on rumen liquid associated microbiota of lactating dairy cows subjected to repeated grain-based SARA challenges.A total of 32 rumen cannulated cows were randomly assigned to 4 treatments from 4 weeks before until 12 weeks after parturition.Treatment groups included a Control diet or diets supplemented with postbiotics(SCFPa,14 g/d Original XPC;SCFPb-1X,19 g/d Nutri Tek;SCFPb-2X,38 g/d Nutri Tek,Diamond V,Cedar Rapids,IA,USA).Grain-based SARA challenges were conducted during week 5(SARA1)and week 8(SARA2)after parturition by replacing 20%DM of the base total mixed ration(TMR)with pellets containing 50%ground barley and 50%ground wheat.Total DNA from rumen liquid samples was subjected to V3–V416S r RNA gene amplicon sequencing.Characteristics of rumen microbiota were compared among treatments and SARA stages.Results Both SARA challenges reduced the diversity and richness of rumen liquid microbiota,altered the overall composition(β-diversity),and its predicted functionality including carbohydrates and amino acids metabolic pathways.The SARA challenges also reduced the number of significant associations among different taxa,number of hub taxa and their composition in the microbial co-occurrence networks.Supplementation with SCFP postbiotics,in particular SCFPb-2X,enhanced the robustness of the rumen microbiota.The SCFP supplemented cows had less fluctuation in relative abundances of community members when exposed to SARA challenges.The SCFP supplementation promoted the populations of lactate utilizing and fibrolytic bacteria,including members of Ruminococcaceae and Lachnospiraceae,and also increased the numbers of hub taxa during non-SARA and SARA stages.Supplementation with SCFPb-2X prevented the fluctuations in the abundances of hub taxa that were positively correlated with the acetate concentration,andα-andβ-diversity metrics in rumen liquid digesta.Conclusions Induction of SARA challenges reduced microbiota richness and diversity and caused fluctuations in major bacterial phyla in rumen liquid microbiota in lactating dairy cows.Supplementation of SCFP postbiotics could attenuate adverse effects of SARA on rumen liquid microbiota.
文摘Noble metal-based-bimetallic catalysts have been highly investigated and applied in wide applications including biomass transformation via regioselective C−O hydrogenolysis while further modification especially with noble metal is highly promising yet still under investigation.Herein,Ru was found as an effective modifier among the screened noble metals(Ru,Pt,Rh,Pd,Au,and Ag)for Ir-Fe/BN(Ir=5 wt%,Fe/Ir=0.25)catalyst in terminal C−O hydrogenolysis of 1,2-butanediol(1,2-BuD)to 2-butanol(2-BuOH).Only trace amount of Ru(up to 0.5 wt%)was effective in terms of high 2-BuOH selectivity(>60%)and activity(about twice).Larger amount of Ru species(3 wt%)highly enhanced the activity but gave low selectivity to 2-BuOH with by-products of terminal C−C bond scission.Optimized catalyst(Ru(0.5)-Ir-Fe/BN)was reusable at least 4 times and gave moderate 2-BuOH yield(47%)in hydrogenolysis of 1,2-BuD.The promoting effect of Ru addition(0.5 wt%)to Ir-Fe/BN on hydrogenolysis of various alcohols was also confirmed.Combining catalytic tests with various characterizations,the promotion mechanism of Ru species in trimetallic catalysts was clarified.The Ru species in Ru(0.5)-Ir-Fe/BN form alloy with Ir and are enriched at the interface with BN surface,and direct interaction between Ru and Fe was not necessary in Ru-Ir-Fe alloy.The interface of Ir and Fe on the surface of Ir-Fe alloy may work as active sites for 1,2-diols to secondary alcohols via direct C−O hydrogenolysis,in which Ru-modified Ir activates H_(2) to form hydride-like species.The activity of Ru species in C−C bond cleavage was highly suppressed due to the direct interaction with Ir species and less exposed to substrate.Larger loading amount of Ru species(3 wt%)led to the formation Ru-rich trimetallic alloy,which further works as active sites for C−C bond scission.
基金supported by funding from Lallemand Health Solution(Mirabel,QC)Alberta Milk(Edmonton,AB)+3 种基金the Saskatoon Colostrum Co.Ltd.(Saskatoon,SK)the Natural Sciences and Engineering Research Council of Canada(Ottawa,ON)supported by a Mitacs Accelerate Program from Mitacs Canada(Toronto,ON)Lallemand SAS(Blagnac,France)。
文摘Background As Holstein calves are susceptible to gastrointestinal disorders during the first week of life,understanding how intestinal immune function develops in neonatal calves is important to promote better intestinal health.Feeding probiotics in early life may contribute to host intestinal health by facilitating beneficial bacteria colonization and developing intestinal immune function.The objective of this study was to characterize the impact of early life yeast supplementation and growth on colon mucosa-attached bacteria and host immune function.Results Twenty Holstein bull calves received no supplementation(CON)or Saccharomyces cerevisiae boulardii(SCB)from birth to 5 d of life.Colon tissue biopsies were taken within 2 h of life(D0)before the first colostrum feeding and 3 h after the morning feeding at d 5 of age(D5)to analyze mucosa-attached bacteria and colon transcriptome.Metagenome sequencing showed that there was no difference inαandβdiversity of mucosa-attached bacteria between day and treatment,but bacteria related to diarrhea were more abundant in the colon mucosa on D0 compared to D5.In addition,q PCR indicated that the absolute abundance of Escherichia coli(E.coli)decreased in the colon mucosa on D5 compared to D0;however,that of Bifidobacterium,Lactobacillus,and Faecalibacterium prausnitzii,which could competitively exclude E.coli,increased in the colon mucosa on D5 compared to D0.RNA-sequencing showed that there were no differentially expressed genes between CON and SCB,but suggested that pathways related to viral infection such as“Interferon Signaling”were activated in the colon mucosa of D5 compared to D0.Conclusions Growth affected mucosa-attached bacteria and host immune function in the colon mucosa during the first 5 d of life in dairy calves independently of SCB supplementation.During early life,opportunistic pathogens may decrease due to intestinal environmental changes by beneficial bacteria and/or host immune function.Predicted activation of immune function-related pathways may be the result of host immune function development or suggest other antigens in the intestine during early life.Further studies focusing on the other antigens and host immune function in the colon mucosa are required to better understand intestinal immune function development.
基金supported by Department of Physics and GXUNAOC Center for Astrophysics and Space Sciences,Guangxi UniversityThe National Natural Science Foundation of China(Nos.12027803,U1731239,12133003,12175241,U1938201,U1732266)the Guangxi Science Foundation(Nos.2018GXNSFGA281007,2018JJA110048).
文摘POLAR-2 is a gamma-ray burst(GRB)polarimeter that is designed to study the polarization in GRB radiation emissions,aiming to improve our knowledge of related mechanisms.POLAR-2 is expected to utilize an on-board polarimeter that is sensitive to soft X-rays(2-10 keV),called low-energy polarization detector.We have developed a new soft X-ray polari-zation detector prototype based on gas microchannel plates(GMCPs)and pixel chips(Topmetal).The GMCPs have bulk resistance,which prevents charging-up effects and ensures gain stability during operation.The detector is composed of low outgassing materials and is gas-sealed using a laser welding technique,ensuring long-term stability.A modulation factor of 41.28%±0.64% is obtained for a 4.5 keV polarized X-ray beam.A residual modulation of 1.96%±0.58% at 5.9 keV is observed for the entire sensitive area.
基金financially supported by funds from the USDA-NIFA(award number 2014-67015-21832)。
文摘Background The study objective was to test the hypothesis that low crude protein(CP)diet with crystalline amino acids(CAA)supplementation improves Lys utilization efficiency for milk production and reduces protein turnover and muscle protein breakdown.Eighteen lactating multiparous Yorkshire sows were allotted to 1 of 2 isocaloric diets(10.80 MJ/kg net energy):control(CON;19.24%CP)and reduced CP with“optimal”AA profile(OPT;14.00%CP).Sow body weight and backfat were recorded on d 1 and 21 of lactation and piglets were weighed on d 1,14,18,and 21 of lactation.Between d 14 and 18,a subset of 9 sows(CON=4,OPT=5)was infused with a mixed solution of 3-[methyl-2H3]histidine(bolus injection)and[13C]bicarbonate(priming dose)first,then a constant 2-h[13C]bicarbonate infusion followed by a 6-h primed constant[1-13C]lysine infusion.Serial blood and milk sampling were performed to determine plasma and milk Lys enrichment,Lys oxidation rate,whole body protein turnover,and muscle protein breakdown.Results Over the 21-d lactation period,compared to CON,sows fed OPT had greater litter growth rate(P<0.05).Compared to CON,sows fed OPT had greater efficiency of Lys(P<0.05),Lys mammary flux(P<0.01)and whole-body protein turnover efficiency(P<0.05).Compared to CON,sows fed OPT tended to have lower whole body protein breakdown rate(P=0.069).Muscle protein breakdown rate did not differ between OPT and CON(P=0.197).Conclusion Feeding an improved AA balance diet increased efficiency of Lys and reduced whole-body protein turnover and protein breakdown.These results imply that the lower maternal N retention observed in lactating sows fed improved AA balance diets in previous studies may be a result of greater partitioning of AA towards milk rather than greater body protein breakdown.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean Government(the Ministry of Science and ICT(MSIT))(No.2021R1A2C2006013)the Bio&Medical Technology Development Program of the NRF funded by the Korean government(MSIT)(No.RS-2023-00223591)the Korea Medical Device Development Fund grant funded by the Korean government(the MSIT,the MOTIE,the Ministry of Health and Welfare,the Ministry of Food and Drug Safety)(NTIS Number:9991006781,KMDF_PR_(2)0200901_0108)。
文摘Current therapeutic approaches for volumetric muscle loss(VML)face challenges due to limited graft availability and insufficient bioactivities.To overcome these limitations,tissue-engineered scaffolds have emerged as a promising alternative.In this study,we developed aligned ternary nanofibrous matrices comprised of poly(lactide-co-ε-caprolactone)integrated with collagen and Ti_(3)C_(2)T_(x)MXene nanoparticles(NPs)(PCM matrices),and explored their myogenic potential for skeletal muscle tissue regeneration.The PCM matrices demonstrated favorable physicochemical properties,including structural uniformity,alignment,microporosity,and hydrophilicity.In vitro assays revealed that the PCM matrices promoted cellular behaviors and myogenic differentiation of C2C12 myoblasts.Moreover,in vivo experiments demonstrated enhanced muscle remodeling and recovery in mice treated with PCM matrices following VML injury.Mechanistic insights from next-generation sequencing revealed that MXene NPs facilitated protein and ion availability within PCM matrices,leading to elevated intracellular Ca^(2+)levels in myoblasts through the activation of inducible nitric oxide synthase(i NOS)and serum/glucocorticoid regulated kinase 1(SGK1),ultimately promoting myogenic differentiation via the m TOR-AKT pathway.Additionally,upregulated i NOS and increased NO–contributed to myoblast proliferation and fiber fusion,thereby facilitating overall myoblast maturation.These findings underscore the potential of MXene NPs loaded within highly aligned matrices as therapeutic agents to promote skeletal muscle tissue recovery.