New approaches for testing of autonomous driving functions are using Virtual Reality (VR) to analyze the behavior of automated vehicles in various scenarios. The real time simulation of the environment sensors is stil...New approaches for testing of autonomous driving functions are using Virtual Reality (VR) to analyze the behavior of automated vehicles in various scenarios. The real time simulation of the environment sensors is still a challenge. In this paper, the conception, development and validation of an automotive radar raw data sensor model is shown. For the implementation, the Unreal VR engine developed by Epic Games is used. The model consists of a sending antenna, a propagation and a receiving antenna model. The microwave field propagation is simulated by a raytracing approach. It uses the method of shooting and bouncing rays to cover the field. A diffused scattering model is implemented to simulate the influence of rough structures on the reflection of rays. To parameterize the model, simple reflectors are used. The validation is done by a comparison of the measured radar patterns of pedestrians and cyclists with simulated values. The outcome is that the developed model shows valid results, even if it still has deficits in the context of performance. It shows that the bouncing of diffuse scattered field can only be done once. This produces inadequacies in some scenarios. In summary, the paper shows a high potential for real time simulation of radar sensors by using ray tracing in a virtual reality.展开更多
Recently, virtual realities and simulations play important roles in the development of automated driving functionalities. By an appropriate abstraction, they help to design, investigate and communicate real traffic sc...Recently, virtual realities and simulations play important roles in the development of automated driving functionalities. By an appropriate abstraction, they help to design, investigate and communicate real traffic scenario complexity. Especially, for edge cases investigations of interactions between vulnerable road users (VRU) and highly automated driving functions, valid virtual models are essential for the quality of results. The aim of this study is to measure, process and integrate real human movement behaviour into a virtual test environment for highly automated vehicle functionalities. The overall system consists of a georeferenced virtual city model and a vehicle dynamics model, including probabilistic sensor descriptions. By motion capture hardware, real humanoid behaviour is applied to a virtual human avatar in the test environment. Through retargeting methods, which enable the independency of avatar and person under test (PuT) dimensions, the virtual avatar diversity is increased. To verify the biomechanical behaviour of the virtual avatars, a qualitative study is performed, which funds on a representative movement sequence. The results confirm the functionality of the used methodology and enable PuT independence control of the virtual avatars in real-time.展开更多
文摘New approaches for testing of autonomous driving functions are using Virtual Reality (VR) to analyze the behavior of automated vehicles in various scenarios. The real time simulation of the environment sensors is still a challenge. In this paper, the conception, development and validation of an automotive radar raw data sensor model is shown. For the implementation, the Unreal VR engine developed by Epic Games is used. The model consists of a sending antenna, a propagation and a receiving antenna model. The microwave field propagation is simulated by a raytracing approach. It uses the method of shooting and bouncing rays to cover the field. A diffused scattering model is implemented to simulate the influence of rough structures on the reflection of rays. To parameterize the model, simple reflectors are used. The validation is done by a comparison of the measured radar patterns of pedestrians and cyclists with simulated values. The outcome is that the developed model shows valid results, even if it still has deficits in the context of performance. It shows that the bouncing of diffuse scattered field can only be done once. This produces inadequacies in some scenarios. In summary, the paper shows a high potential for real time simulation of radar sensors by using ray tracing in a virtual reality.
文摘Recently, virtual realities and simulations play important roles in the development of automated driving functionalities. By an appropriate abstraction, they help to design, investigate and communicate real traffic scenario complexity. Especially, for edge cases investigations of interactions between vulnerable road users (VRU) and highly automated driving functions, valid virtual models are essential for the quality of results. The aim of this study is to measure, process and integrate real human movement behaviour into a virtual test environment for highly automated vehicle functionalities. The overall system consists of a georeferenced virtual city model and a vehicle dynamics model, including probabilistic sensor descriptions. By motion capture hardware, real humanoid behaviour is applied to a virtual human avatar in the test environment. Through retargeting methods, which enable the independency of avatar and person under test (PuT) dimensions, the virtual avatar diversity is increased. To verify the biomechanical behaviour of the virtual avatars, a qualitative study is performed, which funds on a representative movement sequence. The results confirm the functionality of the used methodology and enable PuT independence control of the virtual avatars in real-time.