Chronic pain often develops severe mood changes such as depression.However,how chronic pain leads to depression remains elusive and the mechanisms determining individuals’responses to depression are largely unexplore...Chronic pain often develops severe mood changes such as depression.However,how chronic pain leads to depression remains elusive and the mechanisms determining individuals’responses to depression are largely unexplored.Here we found that depression-like behaviors could only be observed in 67.9%of mice with chronic neuropathic pain,leaving 32.1%of mice with depression resilience.We determined that the spike discharges of the ventral tegmental area(VTA)-projecting lateral habenula(LHb)glutamatergic(Glu)neurons were sequentially increased in sham,resilient and susceptible mice,which consequently inhibited VTA dopaminergic(DA)neurons through a LHbGlu-VTAGABA-VTADA circuit.Furthermore,the LHbGlu-VTADA excitatory inputs were dampened via GABAB receptors in a pre-synaptic manner.Regulation of LHb-VTA pathway largely affected the development of depressive symptoms caused by chronic pain.Our study thus identifies a pivotal role of the LHb-VTA pathway in coupling chronic pain with depression and highlights the activity-dependent contribution of LHbGlu-to-VTADA inhibition in depressive behavioral regulation.展开更多
基金This work was supported by the National Natural Science Foundation of China(32192410,32071000,81870866,81571074,82230037,81971226,81620108008,82130034)the Foundation for Distinguished Young Scholars of ShaanXi(2019JC-21,2021JC-33)+1 种基金Young Scholar Project of the First Affiliated Hospital of Nanchang University(YFYPY202109)the Boost Plan of Xijing Hospital(XJZT21J01).
文摘Chronic pain often develops severe mood changes such as depression.However,how chronic pain leads to depression remains elusive and the mechanisms determining individuals’responses to depression are largely unexplored.Here we found that depression-like behaviors could only be observed in 67.9%of mice with chronic neuropathic pain,leaving 32.1%of mice with depression resilience.We determined that the spike discharges of the ventral tegmental area(VTA)-projecting lateral habenula(LHb)glutamatergic(Glu)neurons were sequentially increased in sham,resilient and susceptible mice,which consequently inhibited VTA dopaminergic(DA)neurons through a LHbGlu-VTAGABA-VTADA circuit.Furthermore,the LHbGlu-VTADA excitatory inputs were dampened via GABAB receptors in a pre-synaptic manner.Regulation of LHb-VTA pathway largely affected the development of depressive symptoms caused by chronic pain.Our study thus identifies a pivotal role of the LHb-VTA pathway in coupling chronic pain with depression and highlights the activity-dependent contribution of LHbGlu-to-VTADA inhibition in depressive behavioral regulation.