High levels of uncertainty in non-methane volatile organic compound (NMVOC) emissions in China could lead to significant variation in the budget of the sum of hydroxyl (OH) and peroxy (HO2,RO2) radicals (ROx =...High levels of uncertainty in non-methane volatile organic compound (NMVOC) emissions in China could lead to significant variation in the budget of the sum of hydroxyl (OH) and peroxy (HO2,RO2) radicals (ROx =OH + HO2 + RO2) and the ozone production rate [P(O3)],but few studies have investigated this possibility,particularly with three-dimensional air quality models.We added diagnostic variables into the WRF-Chem model to assess the impact of the uncertainty in anthropogenic NMVOC (AVOC) emissions on the ROx budget and P(O3) in the Beijing-Tianjin-Hebei region,Yangtze River Delta,and Pearl River Delta of China.The WRF-Chem simulations were compared with satellite and ground observations,and previous observation-based model studies.Results indicated that 68% increases (decreases) in AVOC emissions produced 4%-280% increases (2%-80% decreases) in the concentrations of OH,HO2,and RO2 in the three regions,and resulted in 35%-48% enhancements (26%-39% reductions) in the primary ROx production and ~ 65% decreases (68%-73% increases) of the P(O3) in Beijing,Shanghai,and Guangzhou.For the three cities,the two largest contributors to the ROx production rate were the reaction of O1D + H2O and photolysis of HCHO,ALD2,and others; the reaction of OH + NO2 (71%-85%) was the major ROx sink; and the major contributor to P(O3) was the reaction of HO2 + NO (~ 65%).Our results showed that AVOC emissions in 2006 from Zhang et al.(2009) have been underestimated by ~ 68% in suburban areas and by > 68% in urban areas,implying that daily and hourly concentrations of secondary organic aerosols and inorganic aerosols could be substantially underestimated,and cloud condensation nuclei could be underestimated,whereas local and regional radiation was overestimated.展开更多
The Louis scheme and the COARE algorithm (version 3.0) are tested against eddy covariance and inertial dissipation methods for friction velocity estimates in different wind-sea/swell regimes. Atmospheric forcing dat...The Louis scheme and the COARE algorithm (version 3.0) are tested against eddy covariance and inertial dissipation methods for friction velocity estimates in different wind-sea/swell regimes. Atmospheric forcing data, tabulated by Donelan et al. (1997.J Phys Oceanog, 27:2087-2099), were collected from a mast on the foredeck of a SWATH (small water-plane area, twin hull) ship in deep sea off the State of Virginia during the surface wave dynamics experiment. These data are representative of low to moderate wind regimes. The aerodynamic roughness length is determined by using the Charnock relationship. The intercomparison shows that the Louis scheme and the COARE algorithm underestimate the friction velocity by 6% and 3% respectively under pure wind sea conditions, 15% and 13% respectively under cross swell conditions, and 21% and 17% respectively under counter swell conditions. The analysis shows that these underestimations were caused by the method chosen to determine the aerodynamic roughness length because it significantly underestimates the aerodynamic roughness length. It is especially true under the cross swell and counter swell conditions.展开更多
The objective of this study is to evaluate the performance of three models for estimating daily evapotranspiration(ET) by employing flux observation data from three years(2007, 2008 and 2009) during the growing season...The objective of this study is to evaluate the performance of three models for estimating daily evapotranspiration(ET) by employing flux observation data from three years(2007, 2008 and 2009) during the growing seasons of winter wheat and rice crops cultivated in a farmland ecosystem(Shouxian County) located in the Huai River Basin(HRB), China. The first model is a two-step model(PM-Kc);the other two are one-step models(e.g., Rana-Katerji(R-K) and advection-aridity(AA)). The results showed that the energy closure degrees of eddy covariance(EC) data during winter wheat and rice-growing seasons were reasonable in the HRB, with values ranging from 0.84 to 0.91 and R2 of approximately 0.80. Daily ET of winter wheat showed a slow decreasing trend followed by a rapid increase, while that of rice presented a decreasing trend after an increase. After calibrating the crop coefficient(Kc), the PM–Kc model performed better than the model using the Kc recommended by the Food and Agricultural Organization(FAO). The calibrated key parameters of the R-K model and AA model showed better universality. After calibration, the simulation performance of the PM-Kc model was satisfactory. Both the R-K model and AA model underestimated the daily ET of winter wheat and rice. Compared with that of the R-K model, the simulation result of the AA model was better, especially in the simulation of daily ET of rice. Overall, this research highlighted the consistency of the PM-Kc model to estimate the water demand for rice and wheat crops in the HRB and in similar climatic regions in the world.展开更多
[ Objective] The aim was to analyze diurnal temperature range in Guigang from 1960 to 2009. [Method] Based on the conventional me- teorological data (mean daily temperature, mean maximum temperature, and mean minimum...[ Objective] The aim was to analyze diurnal temperature range in Guigang from 1960 to 2009. [Method] Based on the conventional me- teorological data (mean daily temperature, mean maximum temperature, and mean minimum temperature) of Guigang region during 1960 -2009, the Diurnal Temperature Range (DTR) and the DTR trend were studied. [ Result] The annual minimum temperatures and the annual maximum temperature were significantly increasing. The maximum temperature rose less than minimum temperature and spatial changes of daily temperature narrowed gradually from the Tropic of Cancer to the two sides. The extreme diurnal temperature decreased mostly in stations far away from the Tropic of Cancer and the significance was strong. The extreme diurnal temperature decreased little in stations close to the Tropic of Cancer. Influ- ences of different factors on daily difference varied. DTR positively correlated with sunshine duration, and negatively related to total cloudiness, rel- ative humidity and precipitation. DTR had insignificant relation with average wind speed. [ Conclusion] The study provided basis for the understand- ing of climate changes in Guigang.展开更多
The paper discusses the core parameters of the 3 D and 4 D variational merging based on L1 norm regularization,namely optimization characteristic correlation length of background error covariance matrix and regulariza...The paper discusses the core parameters of the 3 D and 4 D variational merging based on L1 norm regularization,namely optimization characteristic correlation length of background error covariance matrix and regularization parameter. Classical 3 D/4 D variational merging is based on the theory that error follows Gaussian distribution. It involves the solution of the objective functional gradient in minimization iteration,which requires the data to have continuity and differentiability. Classic 3 D/4 D-dimensional variational merging method was extended,and L1 norm was used as the constraint coupling to the classical variational merged model. Experiment was carried out by using linear advection-diffusion equation as four-dimensional prediction model,and parameter optimization of this method is discussed. Considering the strong temporal and spatial variation of water vapor,this method is further applied to the precipitable water vapor( PWV) merging by calculating reanalysis data and GNSS retrieval.Parameters were adjusted gradually to analyze the influence of background field on the merging result,and the experiment results show that the mathematical algorithm adopted in this paper is feasible.展开更多
By using the observed monthly mean temperature and humidity dat, asets of 14 ra- diosonde stations and monthly mean precipitation data of 83 surface station., from 1979 to 2008 over the Tibetan Plateau (TP), the rel...By using the observed monthly mean temperature and humidity dat, asets of 14 ra- diosonde stations and monthly mean precipitation data of 83 surface station., from 1979 to 2008 over the Tibetan Plateau (TP), the relationship between the atmospheric water vapor (WV) and precipitation in summer and the precipitation conversion efficiency IPEC) over the TP are analyzed. The results are obtained as follows. (1) The summer WV decreases with increasing altitude, with the largest value area observed in the northeastern part of the TP, and the second largest value area in the southeastern part of the TP, while the northwestern part is the lowest value area. The summer precipitation decreases from southeast to north- west. (2) The summer WV presents two main patterns based on the EOF analysis: the whole region consistent-type and the north-south opposite-type. The north-south opposite-type of the summer WV is similar to the first EOF mode of the summer precipitation and both of their zero lines are located to the north of the Tanggula Mountains. (3) The summer precipitation is more (less) in the southern (northern) TP in the years with the distribution of deficient summer WV in the north while abundant in the south, and vice versa. (4) The PEC over the TP is between 3% and 38% and it has significant spatial difference in summer, which is obviously bigger in the southern TP than that in the northern TP.展开更多
In the summers of 1998 and 1999, Chinese and Japanese scientists cooperatively conducted the first large-scale energy and water cycle experiment(WCRP/GEWEX/GAME/HUBEX: World Climate Research Program/Global Energy and ...In the summers of 1998 and 1999, Chinese and Japanese scientists cooperatively conducted the first large-scale energy and water cycle experiment(WCRP/GEWEX/GAME/HUBEX: World Climate Research Program/Global Energy and Water Cycle Experiment/Asian Monsoon Experiment/Huaihe River Basin Energy and Water Cycle Experiment) in the Huaihe River basin, Anhui Province of China. The main objective of this field experiment(HUBEX)was to investigate the multiple-scale structure characteristics, life cycles, and genesis and development mechanisms of the Meiyu system in East Asia as well as the cause of related flooding disasters. It was a joint China-Japan cooperative meteorological and hydrological observation experiment. On the basis of intensive observations, scientists from the two countries conducted follow-up investigations through collating and compiling data and performing scientific analysis during the following five years. It can be concluded that the HUBEX project has yielded comprehensive and remarkable achievements. This paper introduces the major scientific results derived from this field experiment and the ensuing investigations, and reassesses their merits and shortages for the purpose of providing useful experience and proposing new research targets as well as prospects for the initiation of a new joint scientific Meiyu experiment in the middle and lower Yangtze River basin.展开更多
Waterlogging is a serious agro-meteorological disaster caused by excessive soil water,which usually causes tremendous crop yield losses.The region of middle and lower reaches of Yangtze River in China is an important ...Waterlogging is a serious agro-meteorological disaster caused by excessive soil water,which usually causes tremendous crop yield losses.The region of middle and lower reaches of Yangtze River in China is an important production base of winter wheat,and is an area prone to waterlogging.The risk assessment of winter wheat waterlogging can provide more thorough understanding about the risk-prone environment related with food safety in this region.This study combined a variety of environmental and agricultural factors and assessed the waterlogging risk of winter wheat from the aspects of sensitivity of hazard formative environments,hazard risk,and vulnerability of hazard-affected body using multi-source data.Furthermore,it constructed a compound waterlogging risk assessment model to classify the study area into high,relatively high,moderate,and low risky areas,respectively.The results showed that the proposed model could more comprehensively reflect the occurrence mechanism of winter wheat waterlogging by synchronizing geographical,agricultural,and meteorological factors.The waterlogging regionalization based on the model could reasonably represent the spatial distribution and differentiate regional characteristics of winter wheat waterlogging in the study area.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41175105 and 41105098)the Beijing Natural Science Foundation (Grant No.8144054)+1 种基金a Key Project of CAS (Grant No.XDB05030301)the Carbon and Nitrogen Cycle Project of IAP, CAS
文摘High levels of uncertainty in non-methane volatile organic compound (NMVOC) emissions in China could lead to significant variation in the budget of the sum of hydroxyl (OH) and peroxy (HO2,RO2) radicals (ROx =OH + HO2 + RO2) and the ozone production rate [P(O3)],but few studies have investigated this possibility,particularly with three-dimensional air quality models.We added diagnostic variables into the WRF-Chem model to assess the impact of the uncertainty in anthropogenic NMVOC (AVOC) emissions on the ROx budget and P(O3) in the Beijing-Tianjin-Hebei region,Yangtze River Delta,and Pearl River Delta of China.The WRF-Chem simulations were compared with satellite and ground observations,and previous observation-based model studies.Results indicated that 68% increases (decreases) in AVOC emissions produced 4%-280% increases (2%-80% decreases) in the concentrations of OH,HO2,and RO2 in the three regions,and resulted in 35%-48% enhancements (26%-39% reductions) in the primary ROx production and ~ 65% decreases (68%-73% increases) of the P(O3) in Beijing,Shanghai,and Guangzhou.For the three cities,the two largest contributors to the ROx production rate were the reaction of O1D + H2O and photolysis of HCHO,ALD2,and others; the reaction of OH + NO2 (71%-85%) was the major ROx sink; and the major contributor to P(O3) was the reaction of HO2 + NO (~ 65%).Our results showed that AVOC emissions in 2006 from Zhang et al.(2009) have been underestimated by ~ 68% in suburban areas and by > 68% in urban areas,implying that daily and hourly concentrations of secondary organic aerosols and inorganic aerosols could be substantially underestimated,and cloud condensation nuclei could be underestimated,whereas local and regional radiation was overestimated.
基金This work was mainly supported by the National Natural Science Foundation of China under contract No.5087-02/04-5K-14 through the project titled as“Observational study of boundary layer physics processes over the Arctic area"It was also partly supported by the Office of Naval Research,Marine Meteorology and Atmospheric Efects through the CBLAST project.We thank anonymous reviewers very much for their comments.
文摘The Louis scheme and the COARE algorithm (version 3.0) are tested against eddy covariance and inertial dissipation methods for friction velocity estimates in different wind-sea/swell regimes. Atmospheric forcing data, tabulated by Donelan et al. (1997.J Phys Oceanog, 27:2087-2099), were collected from a mast on the foredeck of a SWATH (small water-plane area, twin hull) ship in deep sea off the State of Virginia during the surface wave dynamics experiment. These data are representative of low to moderate wind regimes. The aerodynamic roughness length is determined by using the Charnock relationship. The intercomparison shows that the Louis scheme and the COARE algorithm underestimate the friction velocity by 6% and 3% respectively under pure wind sea conditions, 15% and 13% respectively under cross swell conditions, and 21% and 17% respectively under counter swell conditions. The analysis shows that these underestimations were caused by the method chosen to determine the aerodynamic roughness length because it significantly underestimates the aerodynamic roughness length. It is especially true under the cross swell and counter swell conditions.
基金supported by the National Natural Science Foundation of China (41905100)the Anhui Provincial Natural Science Foundation, China (1908085QD171)+3 种基金the Anhui Agricultural University Science Foundation for Young Scholars, China (2018zd07)the Anhui Agricultural University Introduction and Stabilization of Talent Fund, China (yj2018-57)the National Key Research and Development Program of China (2018YFD0300905)the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (KYCX17_0885)。
文摘The objective of this study is to evaluate the performance of three models for estimating daily evapotranspiration(ET) by employing flux observation data from three years(2007, 2008 and 2009) during the growing seasons of winter wheat and rice crops cultivated in a farmland ecosystem(Shouxian County) located in the Huai River Basin(HRB), China. The first model is a two-step model(PM-Kc);the other two are one-step models(e.g., Rana-Katerji(R-K) and advection-aridity(AA)). The results showed that the energy closure degrees of eddy covariance(EC) data during winter wheat and rice-growing seasons were reasonable in the HRB, with values ranging from 0.84 to 0.91 and R2 of approximately 0.80. Daily ET of winter wheat showed a slow decreasing trend followed by a rapid increase, while that of rice presented a decreasing trend after an increase. After calibrating the crop coefficient(Kc), the PM–Kc model performed better than the model using the Kc recommended by the Food and Agricultural Organization(FAO). The calibrated key parameters of the R-K model and AA model showed better universality. After calibration, the simulation performance of the PM-Kc model was satisfactory. Both the R-K model and AA model underestimated the daily ET of winter wheat and rice. Compared with that of the R-K model, the simulation result of the AA model was better, especially in the simulation of daily ET of rice. Overall, this research highlighted the consistency of the PM-Kc model to estimate the water demand for rice and wheat crops in the HRB and in similar climatic regions in the world.
基金Supported by The National Science and Technology Support Project (2007BAC29B02)The National Basic Research Program of China (2010CB428505)
文摘[ Objective] The aim was to analyze diurnal temperature range in Guigang from 1960 to 2009. [Method] Based on the conventional me- teorological data (mean daily temperature, mean maximum temperature, and mean minimum temperature) of Guigang region during 1960 -2009, the Diurnal Temperature Range (DTR) and the DTR trend were studied. [ Result] The annual minimum temperatures and the annual maximum temperature were significantly increasing. The maximum temperature rose less than minimum temperature and spatial changes of daily temperature narrowed gradually from the Tropic of Cancer to the two sides. The extreme diurnal temperature decreased mostly in stations far away from the Tropic of Cancer and the significance was strong. The extreme diurnal temperature decreased little in stations close to the Tropic of Cancer. Influ- ences of different factors on daily difference varied. DTR positively correlated with sunshine duration, and negatively related to total cloudiness, rel- ative humidity and precipitation. DTR had insignificant relation with average wind speed. [ Conclusion] The study provided basis for the understand- ing of climate changes in Guigang.
基金Supported by Open Foundation Project of Shenyang Institute of Atmospheric Environment,China Meteorological Administration(2016SYIAE14)Natural Science Foundation of Anhui Province,China(1708085QD89)National Natural Science Foundation of China(41805080)
文摘The paper discusses the core parameters of the 3 D and 4 D variational merging based on L1 norm regularization,namely optimization characteristic correlation length of background error covariance matrix and regularization parameter. Classical 3 D/4 D variational merging is based on the theory that error follows Gaussian distribution. It involves the solution of the objective functional gradient in minimization iteration,which requires the data to have continuity and differentiability. Classic 3 D/4 D-dimensional variational merging method was extended,and L1 norm was used as the constraint coupling to the classical variational merged model. Experiment was carried out by using linear advection-diffusion equation as four-dimensional prediction model,and parameter optimization of this method is discussed. Considering the strong temporal and spatial variation of water vapor,this method is further applied to the precipitable water vapor( PWV) merging by calculating reanalysis data and GNSS retrieval.Parameters were adjusted gradually to analyze the influence of background field on the merging result,and the experiment results show that the mathematical algorithm adopted in this paper is feasible.
基金National Basic Research Program of China,No.2010CB428505No.2012CB955204+1 种基金R&D Research Development Program of China Special Fund for Public Welfare Industry(Meteorology),No.GYHY200906014Open Lab Foundation of Institute of Plateau Meteorology,CMA,Chengdu,No.LPM201105
文摘By using the observed monthly mean temperature and humidity dat, asets of 14 ra- diosonde stations and monthly mean precipitation data of 83 surface station., from 1979 to 2008 over the Tibetan Plateau (TP), the relationship between the atmospheric water vapor (WV) and precipitation in summer and the precipitation conversion efficiency IPEC) over the TP are analyzed. The results are obtained as follows. (1) The summer WV decreases with increasing altitude, with the largest value area observed in the northeastern part of the TP, and the second largest value area in the southeastern part of the TP, while the northwestern part is the lowest value area. The summer precipitation decreases from southeast to north- west. (2) The summer WV presents two main patterns based on the EOF analysis: the whole region consistent-type and the north-south opposite-type. The north-south opposite-type of the summer WV is similar to the first EOF mode of the summer precipitation and both of their zero lines are located to the north of the Tanggula Mountains. (3) The summer precipitation is more (less) in the southern (northern) TP in the years with the distribution of deficient summer WV in the north while abundant in the south, and vice versa. (4) The PEC over the TP is between 3% and 38% and it has significant spatial difference in summer, which is obviously bigger in the southern TP than that in the northern TP.
基金Supported by the Special Strategic Project of Leading Science and Technology of Chinese Academy of Sciences(XDA20100304)National Natural Science Foundation of China(41790471)。
文摘In the summers of 1998 and 1999, Chinese and Japanese scientists cooperatively conducted the first large-scale energy and water cycle experiment(WCRP/GEWEX/GAME/HUBEX: World Climate Research Program/Global Energy and Water Cycle Experiment/Asian Monsoon Experiment/Huaihe River Basin Energy and Water Cycle Experiment) in the Huaihe River basin, Anhui Province of China. The main objective of this field experiment(HUBEX)was to investigate the multiple-scale structure characteristics, life cycles, and genesis and development mechanisms of the Meiyu system in East Asia as well as the cause of related flooding disasters. It was a joint China-Japan cooperative meteorological and hydrological observation experiment. On the basis of intensive observations, scientists from the two countries conducted follow-up investigations through collating and compiling data and performing scientific analysis during the following five years. It can be concluded that the HUBEX project has yielded comprehensive and remarkable achievements. This paper introduces the major scientific results derived from this field experiment and the ensuing investigations, and reassesses their merits and shortages for the purpose of providing useful experience and proposing new research targets as well as prospects for the initiation of a new joint scientific Meiyu experiment in the middle and lower Yangtze River basin.
基金This work is supported by the special fund for industrial scientific research in the public interest(Meteorology)(Grant No.GYHY201406028)National Natural Foundation of China(Grant No.41371412-D010702).
文摘Waterlogging is a serious agro-meteorological disaster caused by excessive soil water,which usually causes tremendous crop yield losses.The region of middle and lower reaches of Yangtze River in China is an important production base of winter wheat,and is an area prone to waterlogging.The risk assessment of winter wheat waterlogging can provide more thorough understanding about the risk-prone environment related with food safety in this region.This study combined a variety of environmental and agricultural factors and assessed the waterlogging risk of winter wheat from the aspects of sensitivity of hazard formative environments,hazard risk,and vulnerability of hazard-affected body using multi-source data.Furthermore,it constructed a compound waterlogging risk assessment model to classify the study area into high,relatively high,moderate,and low risky areas,respectively.The results showed that the proposed model could more comprehensively reflect the occurrence mechanism of winter wheat waterlogging by synchronizing geographical,agricultural,and meteorological factors.The waterlogging regionalization based on the model could reasonably represent the spatial distribution and differentiate regional characteristics of winter wheat waterlogging in the study area.