The exhaust emissions and frequent traffic incidents caused by traffic congestion have affected the operation and development of urban transport systems.Monitoring and accurately forecasting urban traffic operation is...The exhaust emissions and frequent traffic incidents caused by traffic congestion have affected the operation and development of urban transport systems.Monitoring and accurately forecasting urban traffic operation is a critical task to formulate pertinent strategies to alleviate traffic congestion.Compared with traditional short-time traffic prediction,this study proposes a machine learning algorithm-based traffic forecasting model for daily-level peak hour traffic operation status prediction by using abundant historical data of urban traffic performance index(TPI).The study also constructed a multi-dimensional influencing factor set to further investigate the relationship between different factors on the quality of road network operation,including day of week,time period,public holiday,car usage restriction policy,special events,etc.Based on long-term historical TPI data,this research proposed a daily dimensional road network TPI prediction model by using an extreme gradient boosting algorithm(XGBoost).The model validation results show that the model prediction accuracy can reach higher than 90%.Compared with other prediction models,including Bayesian Ridge,Linear Regression,ElatsicNet,SVR,the XGBoost model has a better performance,and proves its superiority in large high-dimensional data sets.The daily dimensional prediction model proposed in this paper has an important application value for predicting traffic status and improving the operation quality of urban road networks.展开更多
A time-space(TS)traffic diagram is one of the most important tools for traffic visualization and analysis.Recently,it has been empirically shown that using parallelogram cells to construct a TS diagram outperforms usi...A time-space(TS)traffic diagram is one of the most important tools for traffic visualization and analysis.Recently,it has been empirically shown that using parallelogram cells to construct a TS diagram outperforms using rectangular cells due to its incorporation of traffic wave speed.However,it is not realistic to immediately change the fundamental method of TS diagram construction that has been well embedded in various systems.To quickly make the existing TS diagram incorporate traffic wave speed and exhibit more realistic traffic patterns,the paper proposes an area-weighted transformation method that directly transforms rectangular-cell-based TS(rTS)diagrams into parallelogram-cell-based TS(pTS)diagrams,avoiding tracing back the raw data of speed to make the transformation.Two five-hour trajectory datasets from Japanese highway segments are used to demonstrate the effectiveness of the proposed methods.The travel time-based comparison involves assessing the disparities between actual travel times and those computed using rTS diagrams,as well as travel times derived directly from pTS diagrams based on rTS diagrams.The results show that travel times calculated from pTS diagrams converted from rTS diagrams are closer to the actual values,especially in congested conditions,demonstrating superior performance in parallelogram representation.The proposed transformation method has promising prospects for practical applications,making the widely-existing TS diagrams show more realistic traffic patterns.展开更多
Crowdfunding has become important in increasing financial support for the development of green technologies.Self-disclosed information significantly affects supporters’decisions and is important for the success of gr...Crowdfunding has become important in increasing financial support for the development of green technologies.Self-disclosed information significantly affects supporters’decisions and is important for the success of green project funding.However,current studies still lack investigations into the impact of information disclosure on green crowdfunding performance.This research aims to fill this knowledge gap by exploring eight information disclosure-relevant factors in green crowdfunding performance.Applying machine learning techniques(e.g.,Natural Language Processing and Computer Vision)and logistic regression,this study investigates 720 green crowdfunding campaigns on GoFundMe and empirically finds that the duration,length of campaign introductions,and length of the title influence fundraising outcomes.However,no evidence supports the impact of goal size,emotion of campaign introduction,or image content on funding success.This study clarifies the information disclosure-related data that green crowdfunding campaigns should consider and provides founders with a constructive guide to smoothly raise money for a green crowdfunding campaign.This study also contributes to data processing methods by providing future studies with an approach for transferring unstructured data to structured data.展开更多
In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers a...In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.展开更多
Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fa...Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fabric anisotropy related to the internal soil structure such as particle orientation,force network and void space is found to have profound influence on sand liquefaction.A constitutive model accounting for the effect of anisotropy on sand liquefaction is proposed.Evolution of fabric anisotropy during loading is considered according to the anisotropic critical state theory for sand.The model has been validated by extensive test results on Toyoura sand with different initial densities and stress states.The effect of sample preparation method on sand liquefaction is qualitatively analysed.The model has been used to investigate the response of a sand ground under earthquake loading.It is shown that sand with horizontal bedding plane has the highest resistance to liquefaction when the sand deposit is anisotropic,which is consistent with the centrifuge test results.The initial degree of fabric anisotropy has a more significant influence on the liquefaction resistance.Sand with more anisotropic fabric that can be caused by previous loading history or compaction methods has lower liquefaction resistance.展开更多
The current measuring methods of walkability,such as the walk score,consider that walking distance decay laws for all amenities are the same,which is not applicable to typical communities in China with plentiful resou...The current measuring methods of walkability,such as the walk score,consider that walking distance decay laws for all amenities are the same,which is not applicable to typical communities in China with plentiful resources.Therefore,the walking distance decay laws of multi-type and multi-scale facilities are studied.Firstly,based on the residents'amenity selection survey,the walking distance decay law of residents'choice of amenity was studied from three aspects,including the law of all amenities,the laws of different types of amenities and the laws of different scales of amenities.It was proved that the walking distance decay laws of different kinds of amenities showed a significant difference.Secondly,different amenities'acceptable walking distance and optimum walking distance were obtained according to previous studies and the decay curve.Amenities with higher attraction and/or a larger scale showed a longer acceptable walking distance and optimum walking distance.Finally,the binary logistic model was used to describe the relationships between walking distance,amenity type,amenity scale and the probability of one amenity being selected,the prediction accuracy of which reached 80.4%.The calculated probability obtained from the model can be used as the decay coefficient of amenities in the measurement of walkability,providing a reference for the site selection and evaluation of amenities.展开更多
The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and cons...The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined.展开更多
To comprehensively and systematically review the research achievements of transit-oriented development(TOD)typology,a total of 41 papers were collected from the Scopus and Web of Science Core Collection databases.Thes...To comprehensively and systematically review the research achievements of transit-oriented development(TOD)typology,a total of 41 papers were collected from the Scopus and Web of Science Core Collection databases.These papers were analyzed by bibliometric indicators,in adopting VOSviewer software to draw graphical visualizations.A review of international and domestic research progress in TOD typologies was conducted.The results indicate that the number of published papers has increased over time.Luca Bertolini is the most contributive author,and the top three contributing organizations are Queensland University of Technology,the University of Amsterdam,and the University of Lisbon.The United States is the most active source country,followed by the Netherlands and Australia.TOD typology methods were analyzed from the aspects of principles,indicators,advantages,and disadvantages and their applications.In recent years,domestic scholars have paid attention to the importance of TOD typologies and applied them in different urban contexts to facilitate the TOD development in China.The understanding of the TOD typology research progress is helpful for developing context-based TOD typology approaches.展开更多
Most of the current studies on drunk driving accidents focus on law making and public education. However, especially in China, there is less statistical analysis on the severity of drunk driving accidents between driv...Most of the current studies on drunk driving accidents focus on law making and public education. However, especially in China, there is less statistical analysis on the severity of drunk driving accidents between driving under the influence of alcohol (DUI) and driving while intoxicated (DWI). 3368 drunk driving related crashes were collected from the blood-alcohol test report in a city of China at 2012 and 2013. After data pre-processing, Chi-square tests were used to analyze the association between different variables and the type of drunk driving. The logistic regression model is conducted to estimate the effect of the variables under DUI and DWI. The results show that Hour of the day, Driver’s age, Driver’s casualties and Accident area have significant correlation with drunk driving. There was a slightly decrease by 0.995 per year with age and a slightly increase by 1.014 with time in the possibility of DWI. DWI is more likely to cause death in traffic accidents (OR = 1.316) than DUI. Driver’s deaths (OR = 2.346) is more likely to happen than the injuries (OR = 1.910) under DWI cases. These findings show that more attention should be paid to strengthen controls on the DWI. It also can provide important basis for accident prevent, traffic law enforcement and traffic management.展开更多
To determinate the combined effect of bus bay stops near access points on the expressway capacity,a new theoretical approach is developed on the basis of gap acceptance theory and queuing theory. According to the loca...To determinate the combined effect of bus bay stops near access points on the expressway capacity,a new theoretical approach is developed on the basis of gap acceptance theory and queuing theory. According to the location between the bus stop and the access upstream or downstream,the capacity models on the expressway are developed for four cases. The results show that there are no significant differences in the capacity among four cases when the bus arrival rate is less than 60 veh / h and the car volume at the entrance and exit is less than 200 pcu / h. As the bus arrival rate and the car volume at the entrance and exit increase,the bus stops at downstream of an entrance and upstream of an exit have remarkable effect on the capacity. The increasing of berth number of the bus stop has a positive effect on the capacities of four cases.展开更多
In some cases of emergency backfill engineering projects, traditional backfill materials cannot meet the requirements of fast construction due to their long curing time. This study presents a new kind of rapid hardeni...In some cases of emergency backfill engineering projects, traditional backfill materials cannot meet the requirements of fast construction due to their long curing time. This study presents a new kind of rapid hardening controlled low strength material, which utilizes both rapid hardening sulphoaluminate cement and recycled fine aggregate from urban red brick construction waste. Totally, sixteen mixtures were prepared for the experiment with different cement-to-sand ratios and water-to-solid ratios. The flowability and bleeding rate of fresh mixture were measured to evaluate its workability, and the compressive strength of hardened mixture was tested to evaluate its rapid hardening and mechanical properties. Test results indicate that rapid hardening controlled low strength material containing recycled fine aggregate from urban red brick construction waste can achieve the desirable flowability, but the bleeding rate increases with the increase of flowability. In addition, 2-hour compressive strength can reach 0.08 - 0.12 MPa, and 4-hour compressive strength is 0.32 - 1.54 MPa, which can meet the requirements of emergency backfill construction. At last, based on the derived compressive strength, a fitting model for predicting compressive strength evolution of this new rapid hardening backfill material is developed, which fits accurately with these experimental data.展开更多
Priority of public transport is one of the important means to enhance the attraction of ground public transportation, and also an important content in the construction of a public transport city. In recent years, Beij...Priority of public transport is one of the important means to enhance the attraction of ground public transportation, and also an important content in the construction of a public transport city. In recent years, Beijing has witnessed large-scale construction of Bus Lane. Based on the current situation that the construction of Bus Lane lacks scientific decision-making methods, this study establishes the time sequence evaluation indicator system for the construction of Bus Lane by analyzing the influencing factors, builds a ranking model of the importance degree of the construction of Bus Lane, and conducts case verification.展开更多
Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction wa...Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction waste.The fluidity and bleeding of the fresh CLSM mixtures were measured via the modified test methods, and the hardened CLSM mixtures were then molded to evaluate their compressive strength and durability. The results showthat the fluidity of the fresh CLSM mixtures is 105 to 227 mm with the corresponding bleeding rate of 3. 7% to 15. 5%, which increases with the increase in fluidity. After aging for 28 d,the compressive strength of the hardened CLSM mixtures reaches 1. 15 to 13. 96 M Pa, and their strength can be further enhanced with longer curing ages. Additionally, the strength increases with the increase of the C/Sa ratio, and decreases with the increase of the W/So ratio under the same curing age. Based on the obtained compressive strength, a fitting model for accurately predicting the compressive strength of the CLSM mixtures was established, which takes into account the above two independent variables( C/Sa and W/So ratios).M oreover, the durability of the hardened CLSM mixtures is enhanced for samples with higher C/Sa ratios.展开更多
To determinate the expressway capacity near a bus bay stop with an access, capacity models on the expressway near a bus stop with an access were developed on the basis of gap acceptance theory and queuing theory. Depe...To determinate the expressway capacity near a bus bay stop with an access, capacity models on the expressway near a bus stop with an access were developed on the basis of gap acceptance theory and queuing theory. Depending on a bus stop position to an entrance or an exit ramp, the capacity models were developed for four cases. Bus bay stops with overflow and bus bay stops without overflow were considered. A comparison of simulation experiment and model calculation was carried out. Results show that the suggested models have high accuracy and reliability, at bus arrival rate below 60 vehicles per hour(veh/h) or vehicle volumes at the entrance and the exit below 200 passenger cars units per hour(pcu/h), and there are no significant difference in the capacities for four cases. When bus arrival rate is above 240 veh/h, the capacities of all four cases will decline rapidly. With berth number increasing, the increasing of the capacities is no obvious for four cases. As the bus arrival rate and vehicle volumes at the entrance and the exit increase, bus stops located downstream of an entrance and upstream of an exit have a remarkably effect on the capacities. The latter case is much heavier than the former. Those results can be used to traffic design and optimization on urban expressway near a bus stop with an access.展开更多
This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.Th...This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.The emotion spread model with the effect of group behavior,and the leader-follower model with the effect of emotion state are proposed.On this basis,exit choice strategies with the effect of emotion state and group behavior are proposed.Fusing emotion spread model,leader-follower model,and exit choice strategies into a cellular automata(CA)-based pedestrian simulation model,we simulate the evacuation process in a multi-exit case.Simulation results indicate that panic emotion and group behavior are two negative influence factors for pedestrian evacuation.Compared with panic emotion or group behavior only,pedestrian evacuation efficiency with the effects of both is lower.展开更多
Under the background of Covid-19 sweeping the world,safe and reasonable passenger flow management strategy in subway stations is an effective means to prevent the spread of virus.Based on the social force model and th...Under the background of Covid-19 sweeping the world,safe and reasonable passenger flow management strategy in subway stations is an effective means to prevent the spread of virus.Based on the social force model and the minimum cost model,the movement and path selection behavior of passengers in the subway station are modeled,and a strategy for passenger flow management to maintain a safe social distance is put forward.Take Qingdao Jinggangshan Road subway station of China as the simulation scene,the validity of the simulation model is verified by comparing the measured value and simulation value of the time required for passengers from getting off the train to the ticket gate.Simulation results indicate that controlling the time interval between incoming passengers at the entrance can effectively control the social distance between passengers and reduce the risk of epidemic infection.By comparing the evacuation process of passengers under different initial densities,it is found that the greater the initial density of passengers is,the longer the passengers are at risk social distance.In the process of passenger emergency evacuation,the stairs/escalators and ticket gates are bottleneck areas with high concentration of passenger density,which should be strictly disinfected many times on the basis of strictly checking the health code of incoming passengers and controlling the arrival time interval.The simulation results of this paper verify the harmfulness of passenger emergency evacuation without protective measures,and provide theoretical support for the operation and management of subway station under the epidemic situation.展开更多
Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing an...Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.展开更多
Purpose–This paper aims to optimize the charging schedule for battery electric buses(BEBs)to minimize the charging cost considering the time-ofuse electricity price.Design/methodology/approach–The BEBs charging sche...Purpose–This paper aims to optimize the charging schedule for battery electric buses(BEBs)to minimize the charging cost considering the time-ofuse electricity price.Design/methodology/approach–The BEBs charging schedule optimization problem is formulated as a mixed-integer linear programming model.The objective is to minimize the total charging cost of the BEB fleet.The charge decision of each BEB at the end of each trip is to be determined.Two types of constraints are adopted to ensure that the charging schedule meets the operational requirements of the BEB fleet and that the number of charging piles can meet the demand of the charging schedule.Findings–This paper conducts numerical cases to validate the effect of the proposed model based on the actual timetable and charging data of a bus line.The results show that the total charge cost with the optimized charging schedule is 15.56%lower than the actual total charge cost under given conditions.The results also suggest that increasing the number of charging piles can reduce the charging cost to some extent,which can provide a reference for planning the number of charging piles.Originality/value–Considering time-of-use electricity price in the BEBs charging schedule will not only reduce the operation cost of electric transit but also make the best use of electricity resources.展开更多
Promoting the growth of the lithium battery sector has been a critical aspect of China's energy policy in terms of achieving carbon neutrality.However,despite significant support on research and development(R&...Promoting the growth of the lithium battery sector has been a critical aspect of China's energy policy in terms of achieving carbon neutrality.However,despite significant support on research and development(R&D)investments that have resulted in increasing size,the sector seems to be falling behind in technological areas.To guide future policies and understand proper ways of promoting R&D efficiency,we looked into the lithium battery industry of China.Specifically,data envelopment analysis(DEA)was used as the primary approach based on evidence from 22 listed lithium battery enterprises.The performance of the five leading players was compared with that of the industry as a whole.Results revealed little indication of a meaningful improvement in R&D efficiency throughout our sample from 2010 to 2019.However,during this period,a significant increase in R&D expenditure was witnessed.This finding was supported,as the results showed that the average technical efficiency of the 22 enterprises was 0.442,whereas the average pure technical efficiency was at 0.503,thus suggesting that they were suffering from decreasing returns to scale(DRS).In contrast,the performance of the five leading players seemed superior because their average efficiency scores were higher than the industry's average.Moreover,they were experiencing increasing scale efficiency(IRS).We draw on these findings to suggest to policymakers that supporting technologically intensive sectors should be more than simply increasing investment scale;rather,it should also encompass assisting businesses in developing efficient managerial processes for R&D.展开更多
基金funded by the National Natural Science Foundation of China(NFSC)(No.52072011)。
文摘The exhaust emissions and frequent traffic incidents caused by traffic congestion have affected the operation and development of urban transport systems.Monitoring and accurately forecasting urban traffic operation is a critical task to formulate pertinent strategies to alleviate traffic congestion.Compared with traditional short-time traffic prediction,this study proposes a machine learning algorithm-based traffic forecasting model for daily-level peak hour traffic operation status prediction by using abundant historical data of urban traffic performance index(TPI).The study also constructed a multi-dimensional influencing factor set to further investigate the relationship between different factors on the quality of road network operation,including day of week,time period,public holiday,car usage restriction policy,special events,etc.Based on long-term historical TPI data,this research proposed a daily dimensional road network TPI prediction model by using an extreme gradient boosting algorithm(XGBoost).The model validation results show that the model prediction accuracy can reach higher than 90%.Compared with other prediction models,including Bayesian Ridge,Linear Regression,ElatsicNet,SVR,the XGBoost model has a better performance,and proves its superiority in large high-dimensional data sets.The daily dimensional prediction model proposed in this paper has an important application value for predicting traffic status and improving the operation quality of urban road networks.
基金National Natural Science Foundation of China(71871010).
文摘A time-space(TS)traffic diagram is one of the most important tools for traffic visualization and analysis.Recently,it has been empirically shown that using parallelogram cells to construct a TS diagram outperforms using rectangular cells due to its incorporation of traffic wave speed.However,it is not realistic to immediately change the fundamental method of TS diagram construction that has been well embedded in various systems.To quickly make the existing TS diagram incorporate traffic wave speed and exhibit more realistic traffic patterns,the paper proposes an area-weighted transformation method that directly transforms rectangular-cell-based TS(rTS)diagrams into parallelogram-cell-based TS(pTS)diagrams,avoiding tracing back the raw data of speed to make the transformation.Two five-hour trajectory datasets from Japanese highway segments are used to demonstrate the effectiveness of the proposed methods.The travel time-based comparison involves assessing the disparities between actual travel times and those computed using rTS diagrams,as well as travel times derived directly from pTS diagrams based on rTS diagrams.The results show that travel times calculated from pTS diagrams converted from rTS diagrams are closer to the actual values,especially in congested conditions,demonstrating superior performance in parallelogram representation.The proposed transformation method has promising prospects for practical applications,making the widely-existing TS diagrams show more realistic traffic patterns.
文摘Crowdfunding has become important in increasing financial support for the development of green technologies.Self-disclosed information significantly affects supporters’decisions and is important for the success of green project funding.However,current studies still lack investigations into the impact of information disclosure on green crowdfunding performance.This research aims to fill this knowledge gap by exploring eight information disclosure-relevant factors in green crowdfunding performance.Applying machine learning techniques(e.g.,Natural Language Processing and Computer Vision)and logistic regression,this study investigates 720 green crowdfunding campaigns on GoFundMe and empirically finds that the duration,length of campaign introductions,and length of the title influence fundraising outcomes.However,no evidence supports the impact of goal size,emotion of campaign introduction,or image content on funding success.This study clarifies the information disclosure-related data that green crowdfunding campaigns should consider and provides founders with a constructive guide to smoothly raise money for a green crowdfunding campaign.This study also contributes to data processing methods by providing future studies with an approach for transferring unstructured data to structured data.
基金supported by the National Key R&D Program of China(2017YFF0205600)the International Research Cooperation Seed Fund of Beijing University of Technology(2018A08)+1 种基金Science and Technology Project of Beijing Municipal Commission of Transport(2018-kjc-01-213)the Construction of Service Capability of Scientific and Technological Innovation-Municipal Level of Fundamental Research Funds(Scientific Research Categories)of Beijing City(PXM2019_014204_500032).
文摘In modern transportation,pavement is one of the most important civil infrastructures for the movement of vehicles and pedestrians.Pavement service quality and service life are of great importance for civil engineers as they directly affect the regular service for the users.Therefore,monitoring the health status of pavement before irreversible damage occurs is essential for timely maintenance,which in turn ensures public transportation safety.Many pavement damages can be detected and analyzed by monitoring the structure dynamic responses and evaluating road surface conditions.Advanced technologies can be employed for the collection and analysis of such data,including various intrusive sensing techniques,image processing techniques,and machine learning methods.This review summarizes the state-ofthe-art of these three technologies in pavement engineering in recent years and suggests possible developments for future pavement monitoring and analysis based on these approaches.
基金The authors would like to acknowledge Dr.Katerina Ziotopoulou at the University of California Davis and Dr.Kyohei Ueda at Kyoto University for providing their centrifuge test data.The 2nd author would like to acknowledge the support of the National Natural Science Foundation of China(Grant No.52025084).
文摘Sand liquefaction under static and dynamic loading can cause failure of embankments,slopes,bridges and other important infrastructure.Sand liquefaction in the seabed can also cause submarine landslides and tsunamis.Fabric anisotropy related to the internal soil structure such as particle orientation,force network and void space is found to have profound influence on sand liquefaction.A constitutive model accounting for the effect of anisotropy on sand liquefaction is proposed.Evolution of fabric anisotropy during loading is considered according to the anisotropic critical state theory for sand.The model has been validated by extensive test results on Toyoura sand with different initial densities and stress states.The effect of sample preparation method on sand liquefaction is qualitatively analysed.The model has been used to investigate the response of a sand ground under earthquake loading.It is shown that sand with horizontal bedding plane has the highest resistance to liquefaction when the sand deposit is anisotropic,which is consistent with the centrifuge test results.The initial degree of fabric anisotropy has a more significant influence on the liquefaction resistance.Sand with more anisotropic fabric that can be caused by previous loading history or compaction methods has lower liquefaction resistance.
文摘The current measuring methods of walkability,such as the walk score,consider that walking distance decay laws for all amenities are the same,which is not applicable to typical communities in China with plentiful resources.Therefore,the walking distance decay laws of multi-type and multi-scale facilities are studied.Firstly,based on the residents'amenity selection survey,the walking distance decay law of residents'choice of amenity was studied from three aspects,including the law of all amenities,the laws of different types of amenities and the laws of different scales of amenities.It was proved that the walking distance decay laws of different kinds of amenities showed a significant difference.Secondly,different amenities'acceptable walking distance and optimum walking distance were obtained according to previous studies and the decay curve.Amenities with higher attraction and/or a larger scale showed a longer acceptable walking distance and optimum walking distance.Finally,the binary logistic model was used to describe the relationships between walking distance,amenity type,amenity scale and the probability of one amenity being selected,the prediction accuracy of which reached 80.4%.The calculated probability obtained from the model can be used as the decay coefficient of amenities in the measurement of walkability,providing a reference for the site selection and evaluation of amenities.
基金supported by the National Basic Research Program of China(Grand No.2012CB723303)the Beijing Committee of Science and Technology,China(Grand No.Z1211000003120100)
文摘The complexity of signal controlled traffic largely stems from the various driving behaviors developed in response to the traffic signal. However, the existing models take a few driving behaviors into account and consequently the traffic dynamics has not been completely explored. Therefore, a new cellular automaton model, which incorporates the driving behaviors typically manifesting during the different stages when the vehicles are moving toward a traffic light, is proposed in this paper. Numerical simulations have demonstrated that the proposed model can produce the spontaneous traffic breakdown and the dissolution of the over-saturated traffic phenomena. Furthermore, the simulation results indicate that the slow-to-start behavior and the inch-forward behavior can foster the traffic breakdown. Particularly, it has been discovered that the over-saturated traffic can be revised to be an under-saturated state when the slow-down behavior is activated after the spontaneous breakdown. Finally, the contributions of the driving behaviors on the traffic breakdown have been examined.
文摘To comprehensively and systematically review the research achievements of transit-oriented development(TOD)typology,a total of 41 papers were collected from the Scopus and Web of Science Core Collection databases.These papers were analyzed by bibliometric indicators,in adopting VOSviewer software to draw graphical visualizations.A review of international and domestic research progress in TOD typologies was conducted.The results indicate that the number of published papers has increased over time.Luca Bertolini is the most contributive author,and the top three contributing organizations are Queensland University of Technology,the University of Amsterdam,and the University of Lisbon.The United States is the most active source country,followed by the Netherlands and Australia.TOD typology methods were analyzed from the aspects of principles,indicators,advantages,and disadvantages and their applications.In recent years,domestic scholars have paid attention to the importance of TOD typologies and applied them in different urban contexts to facilitate the TOD development in China.The understanding of the TOD typology research progress is helpful for developing context-based TOD typology approaches.
文摘Most of the current studies on drunk driving accidents focus on law making and public education. However, especially in China, there is less statistical analysis on the severity of drunk driving accidents between driving under the influence of alcohol (DUI) and driving while intoxicated (DWI). 3368 drunk driving related crashes were collected from the blood-alcohol test report in a city of China at 2012 and 2013. After data pre-processing, Chi-square tests were used to analyze the association between different variables and the type of drunk driving. The logistic regression model is conducted to estimate the effect of the variables under DUI and DWI. The results show that Hour of the day, Driver’s age, Driver’s casualties and Accident area have significant correlation with drunk driving. There was a slightly decrease by 0.995 per year with age and a slightly increase by 1.014 with time in the possibility of DWI. DWI is more likely to cause death in traffic accidents (OR = 1.316) than DUI. Driver’s deaths (OR = 2.346) is more likely to happen than the injuries (OR = 1.910) under DWI cases. These findings show that more attention should be paid to strengthen controls on the DWI. It also can provide important basis for accident prevent, traffic law enforcement and traffic management.
基金National Basic Research Program of China(No.2012CB723303)
文摘To determinate the combined effect of bus bay stops near access points on the expressway capacity,a new theoretical approach is developed on the basis of gap acceptance theory and queuing theory. According to the location between the bus stop and the access upstream or downstream,the capacity models on the expressway are developed for four cases. The results show that there are no significant differences in the capacity among four cases when the bus arrival rate is less than 60 veh / h and the car volume at the entrance and exit is less than 200 pcu / h. As the bus arrival rate and the car volume at the entrance and exit increase,the bus stops at downstream of an entrance and upstream of an exit have remarkable effect on the capacity. The increasing of berth number of the bus stop has a positive effect on the capacities of four cases.
文摘In some cases of emergency backfill engineering projects, traditional backfill materials cannot meet the requirements of fast construction due to their long curing time. This study presents a new kind of rapid hardening controlled low strength material, which utilizes both rapid hardening sulphoaluminate cement and recycled fine aggregate from urban red brick construction waste. Totally, sixteen mixtures were prepared for the experiment with different cement-to-sand ratios and water-to-solid ratios. The flowability and bleeding rate of fresh mixture were measured to evaluate its workability, and the compressive strength of hardened mixture was tested to evaluate its rapid hardening and mechanical properties. Test results indicate that rapid hardening controlled low strength material containing recycled fine aggregate from urban red brick construction waste can achieve the desirable flowability, but the bleeding rate increases with the increase of flowability. In addition, 2-hour compressive strength can reach 0.08 - 0.12 MPa, and 4-hour compressive strength is 0.32 - 1.54 MPa, which can meet the requirements of emergency backfill construction. At last, based on the derived compressive strength, a fitting model for predicting compressive strength evolution of this new rapid hardening backfill material is developed, which fits accurately with these experimental data.
文摘Priority of public transport is one of the important means to enhance the attraction of ground public transportation, and also an important content in the construction of a public transport city. In recent years, Beijing has witnessed large-scale construction of Bus Lane. Based on the current situation that the construction of Bus Lane lacks scientific decision-making methods, this study establishes the time sequence evaluation indicator system for the construction of Bus Lane by analyzing the influencing factors, builds a ranking model of the importance degree of the construction of Bus Lane, and conducts case verification.
基金The National Science and Technology Support Program of China(No.2014BAC07B03)the Science and Technology Project of Transportation Committee of Beijing Government(No.2016-LZJKJ-01-006)the National Natural Science Foundation of China(No.51278016)
文摘Sixteen controlled low-strength material( CLSM)mixtures with various cement-to-sand( C/Sa) ratios and water-to-solid( W/So) ratios were prepared using recycled fine aggregate from urban red brick based construction waste.The fluidity and bleeding of the fresh CLSM mixtures were measured via the modified test methods, and the hardened CLSM mixtures were then molded to evaluate their compressive strength and durability. The results showthat the fluidity of the fresh CLSM mixtures is 105 to 227 mm with the corresponding bleeding rate of 3. 7% to 15. 5%, which increases with the increase in fluidity. After aging for 28 d,the compressive strength of the hardened CLSM mixtures reaches 1. 15 to 13. 96 M Pa, and their strength can be further enhanced with longer curing ages. Additionally, the strength increases with the increase of the C/Sa ratio, and decreases with the increase of the W/So ratio under the same curing age. Based on the obtained compressive strength, a fitting model for accurately predicting the compressive strength of the CLSM mixtures was established, which takes into account the above two independent variables( C/Sa and W/So ratios).M oreover, the durability of the hardened CLSM mixtures is enhanced for samples with higher C/Sa ratios.
基金Project(2012CB723303)supported by National Basic Research Program of China
文摘To determinate the expressway capacity near a bus bay stop with an access, capacity models on the expressway near a bus stop with an access were developed on the basis of gap acceptance theory and queuing theory. Depending on a bus stop position to an entrance or an exit ramp, the capacity models were developed for four cases. Bus bay stops with overflow and bus bay stops without overflow were considered. A comparison of simulation experiment and model calculation was carried out. Results show that the suggested models have high accuracy and reliability, at bus arrival rate below 60 vehicles per hour(veh/h) or vehicle volumes at the entrance and the exit below 200 passenger cars units per hour(pcu/h), and there are no significant difference in the capacities for four cases. When bus arrival rate is above 240 veh/h, the capacities of all four cases will decline rapidly. With berth number increasing, the increasing of the capacities is no obvious for four cases. As the bus arrival rate and vehicle volumes at the entrance and the exit increase, bus stops located downstream of an entrance and upstream of an exit have a remarkably effect on the capacities. The latter case is much heavier than the former. Those results can be used to traffic design and optimization on urban expressway near a bus stop with an access.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFC0803903)the National Natural Science Foundation of China(Grant No.62003182)。
文摘This paper analyzes the characteristics of emotion state and group behavior in the evacuation process.During the emergency evacuation,emotion state and group behavior are interacting with each other,and indivisible.The emotion spread model with the effect of group behavior,and the leader-follower model with the effect of emotion state are proposed.On this basis,exit choice strategies with the effect of emotion state and group behavior are proposed.Fusing emotion spread model,leader-follower model,and exit choice strategies into a cellular automata(CA)-based pedestrian simulation model,we simulate the evacuation process in a multi-exit case.Simulation results indicate that panic emotion and group behavior are two negative influence factors for pedestrian evacuation.Compared with panic emotion or group behavior only,pedestrian evacuation efficiency with the effects of both is lower.
基金the National Natural Science Foundation of China(Grant No.62003182)。
文摘Under the background of Covid-19 sweeping the world,safe and reasonable passenger flow management strategy in subway stations is an effective means to prevent the spread of virus.Based on the social force model and the minimum cost model,the movement and path selection behavior of passengers in the subway station are modeled,and a strategy for passenger flow management to maintain a safe social distance is put forward.Take Qingdao Jinggangshan Road subway station of China as the simulation scene,the validity of the simulation model is verified by comparing the measured value and simulation value of the time required for passengers from getting off the train to the ticket gate.Simulation results indicate that controlling the time interval between incoming passengers at the entrance can effectively control the social distance between passengers and reduce the risk of epidemic infection.By comparing the evacuation process of passengers under different initial densities,it is found that the greater the initial density of passengers is,the longer the passengers are at risk social distance.In the process of passenger emergency evacuation,the stairs/escalators and ticket gates are bottleneck areas with high concentration of passenger density,which should be strictly disinfected many times on the basis of strictly checking the health code of incoming passengers and controlling the arrival time interval.The simulation results of this paper verify the harmfulness of passenger emergency evacuation without protective measures,and provide theoretical support for the operation and management of subway station under the epidemic situation.
基金supported by the National Key R&D Program of China(2020YFB1807801,2020YFB1807800)in part by Project Supported by Engineering Research Center of Mobile Communications,Ministry of Education(cqupt-mct-202003)+2 种基金in part by Key Lab of Information Network Security,Ministry of Public Security under Grant C19603in part by National Natural Science Foundation of China(Grant No.61901067 and 61901013)in part by Chongqing Municipal Natural Science Foundation(Grant No.cstc2020jcyj-msxmX0339).
文摘Peer-to-peer(P2P)spectrum sharing and energy trading are promising solutions to locally satisfy spectrum and energy demands in power Internet of Things(IoT).However,implementation of largescale P2P spectrum sharing and energy trading confronts security and privacy challenges.In this paper,we exploit consortium blockchain and Directed Acyclic Graph(DAG)to propose a new secure and distributed spectrum sharing and energy trading framework in power IoT,named spectrum-energy chain,where a set of local aggregators(LAGs)cooperatively confirm the identity of the power devices by utilizing consortium blockchain,so as to form a main chain.Then,the local power devices verify spectrum and energy micro-transactions simultaneously but asynchronously to form local spectrum tangle and local energy tangle,respectively.Moreover,an iterative double auction based micro transactions scheme is designed to solve the spectrum and energy pricing and the amount of shared spectrum and energy among power devices.Security analysis and numerical results illustrate that the developed spectrum-energy chain and the designed iterative double auction based microtransactions scheme are secure and efficient for spectrum sharing and energy trading in power IoT.
基金supported by the National Natural Science Foundation of China(72001007)the China Postdoctoral Science Foundation(2021M700304).
文摘Purpose–This paper aims to optimize the charging schedule for battery electric buses(BEBs)to minimize the charging cost considering the time-ofuse electricity price.Design/methodology/approach–The BEBs charging schedule optimization problem is formulated as a mixed-integer linear programming model.The objective is to minimize the total charging cost of the BEB fleet.The charge decision of each BEB at the end of each trip is to be determined.Two types of constraints are adopted to ensure that the charging schedule meets the operational requirements of the BEB fleet and that the number of charging piles can meet the demand of the charging schedule.Findings–This paper conducts numerical cases to validate the effect of the proposed model based on the actual timetable and charging data of a bus line.The results show that the total charge cost with the optimized charging schedule is 15.56%lower than the actual total charge cost under given conditions.The results also suggest that increasing the number of charging piles can reduce the charging cost to some extent,which can provide a reference for planning the number of charging piles.Originality/value–Considering time-of-use electricity price in the BEBs charging schedule will not only reduce the operation cost of electric transit but also make the best use of electricity resources.
基金This workwas supported by R&D and Application Demonstration of Common Key Technologies in Modern Service Industry,Key Special Sub Topics of National Key R&D Plan(Grant No.2018YFB1402500).
文摘Promoting the growth of the lithium battery sector has been a critical aspect of China's energy policy in terms of achieving carbon neutrality.However,despite significant support on research and development(R&D)investments that have resulted in increasing size,the sector seems to be falling behind in technological areas.To guide future policies and understand proper ways of promoting R&D efficiency,we looked into the lithium battery industry of China.Specifically,data envelopment analysis(DEA)was used as the primary approach based on evidence from 22 listed lithium battery enterprises.The performance of the five leading players was compared with that of the industry as a whole.Results revealed little indication of a meaningful improvement in R&D efficiency throughout our sample from 2010 to 2019.However,during this period,a significant increase in R&D expenditure was witnessed.This finding was supported,as the results showed that the average technical efficiency of the 22 enterprises was 0.442,whereas the average pure technical efficiency was at 0.503,thus suggesting that they were suffering from decreasing returns to scale(DRS).In contrast,the performance of the five leading players seemed superior because their average efficiency scores were higher than the industry's average.Moreover,they were experiencing increasing scale efficiency(IRS).We draw on these findings to suggest to policymakers that supporting technologically intensive sectors should be more than simply increasing investment scale;rather,it should also encompass assisting businesses in developing efficient managerial processes for R&D.