期刊文献+
共找到1,698篇文章
< 1 2 85 >
每页显示 20 50 100
Ultrafast Condensed Matter Physics at Attoseconds 被引量:1
1
作者 胡史奇 孟胜 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第11期139-148,共10页
Our understanding of how photons couple to different degrees of freedom in solids forms the bedrock of ultrafast physics and materials sciences.In this review,the emergent ultrafast dynamics in condensed matter at the... Our understanding of how photons couple to different degrees of freedom in solids forms the bedrock of ultrafast physics and materials sciences.In this review,the emergent ultrafast dynamics in condensed matter at the attosecond timescale have been intensively discussed.In particular,the focus is put on recent developments of attosecond dynamics of charge,exciton,and magnetism.New concepts and indispensable role of interactions among multiple degrees of freedom in solids are highlighted.Applications of attosecond electronic metrology and future prospects toward attosecond dynamics in condensed matter are further discussed.These pioneering studies promise future development of advanced attosecond science and technology such as attosecond lasers,laser medical engineering,and ultrafast electronic devices. 展开更多
关键词 SOLIDS condensed DYNAMICS
原文传递
Capturing the non-equilibrium state in light–matter–free-electron interactions through ultrafast transmission electron microscopy
2
作者 汪文韬 孙帅帅 +5 位作者 李俊 郑丁国 黄思远 田焕芳 杨槐馨 李建奇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期88-101,共14页
Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interact... Ultrafast transmission electron microscope(UTEM) with the multimodality of time-resolved diffraction, imaging,and spectroscopy provides a unique platform to reveal the fundamental features associated with the interaction between free electrons and matter. In this review, we summarize the principles, instrumentation, and recent developments of the UTEM and its applications in capturing dynamic processes and non-equilibrium transient states. The combination of the transmission electron microscope with a femtosecond laser via the pump–probe method guarantees the high spatiotemporal resolution, allowing the investigation of the transient process in real, reciprocal and energy spaces. Ultrafast structural dynamics can be studied by diffraction and imaging methods, revealing the coherent acoustic phonon generation and photoinduced phase transition process. In the energy dimension, time-resolved electron energy-loss spectroscopy enables the examination of the intrinsic electronic dynamics of materials, while the photon-induced near-field electron microscopy extends the application of the UTEM to the imaging of optical near fields with high real-space resolution. It is noted that light–free-electron interactions have the ability to shape electron wave packets in both longitudinal and transverse directions, showing the potential application in the generation of attosecond electron pulses and vortex electron beams. 展开更多
关键词 ultrafast transmission electron microscopy non-equilibrium structural dynamics photo-induced phase transition free-electron–photon interactions
原文传递
Optical-Microwave Entanglement Paves the Way for Distributed Quantum Computation
3
作者 胡志刚 许凯 +1 位作者 张玉祥 李贝贝 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第1期21-24,共4页
Over the past few years,quantum computation based on superconducting circuits has achieved remarkable progress.A milestone occurred in 2019 when Google released Sycamore,a processor with 54 qubits,and claimed quantum ... Over the past few years,quantum computation based on superconducting circuits has achieved remarkable progress.A milestone occurred in 2019 when Google released Sycamore,a processor with 54 qubits,and claimed quantum supremacy by performing in just 100 s a specific computation which would take a classical supercomputer,as stated by Google’s team,10000 years to complete.[1]In 2021,a strong quantum advantage was demonstrated by Pan and his colleagues from the University of Science and Technology of China,using a quantum processor named Zuchongzhi,which has 66 functional qubits.[2]This year,the record of the number of quantum qubits has been lifted to 127 qubits.[3]Indeed,the number of qubits is limited to a few hundreds due to the finite space of dilution refrigerators,where the superconducting qubits must be placed to be isolated from thermal noise.However,this number is still several orders of magnitude away from the requirement of quantum error correction,which is essential for general-purpose quantum computers.[4–8]. 展开更多
关键词 QUANTUM stated CORRECTION
原文传递
Interstitial Doping of SnO_(2) Film with Li for Indium-Free Transparent Conductor
4
作者 陈兴谦 李昊臻 +4 位作者 陈伟 梅增霞 Alexander Azarov Andrej Kuznetsov 杜小龙 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期140-145,共6页
SnO_(2)films exhibit significant potential as cost-effective and high electron mobility substitutes for In_(2)O_(3)films.In this study,Li is incorporated into the interstitial site of the SnO_(2)lattice resulting in a... SnO_(2)films exhibit significant potential as cost-effective and high electron mobility substitutes for In_(2)O_(3)films.In this study,Li is incorporated into the interstitial site of the SnO_(2)lattice resulting in an exceptionally low resistivity of 2.028×10^(-3)Ω·cm along with a high carrier concentration of 1.398×10^(20)cm^(-3)and carrier mobility of 22.02 cm^(2)/V·s. 展开更多
关键词 exceptional RESISTIVITY SUBSTITUTE
原文传递
Development of a monochromatic crystal backlight imager for the recent double-cone ignition experiments
5
作者 张成龙 张翌航 +11 位作者 远晓辉 张喆 徐妙华 戴羽 董玉峰 谷昊琛 刘正东 赵旭 李玉同 李英骏 朱健强 张杰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期40-45,共6页
We developed a monochromatic crystal backlight imaging system for the double-cone ignition(DCI) scheme, employing a spherically bent quartz crystal. This system was used to measure the spatial distribution and tempora... We developed a monochromatic crystal backlight imaging system for the double-cone ignition(DCI) scheme, employing a spherically bent quartz crystal. This system was used to measure the spatial distribution and temporal evolution of the head-on colliding plasma from the two compressing cones in the DCI experiments. The influence of laser parameters on the x-ray backlighter intensity and spatial resolution of the imaging system was investigated. The imaging system had a spatial resolution of 10 μm when employing a CCD detector. Experiments demonstrated that the system can obtain time-resolved radiographic images with high quality, enabling the precise measurement of the shape, size, and density distribution of the plasma. 展开更多
关键词 double-cone ignition(DCI) spatial resolution x-ray radiography
原文传递
Kinetic Limits of Graphite Anode for Fast‑Charging Lithium‑Ion Batteries 被引量:1
6
作者 Suting Weng Gaojing Yang +9 位作者 Simeng Zhang Xiaozhi Liu Xiao Zhang Zepeng Liu Mengyan Cao Mehmet Nurullah Ateş Yejing Li Liquan Chen Zhaoxiang Wang Xuefeng Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期518-529,共12页
Fast-charging lithium-ion batteries are highly required,especially in reducing the mileage anxiety of the widespread electric vehicles.One of the biggest bottlenecks lies in the sluggish kinetics of the Li^(+)intercal... Fast-charging lithium-ion batteries are highly required,especially in reducing the mileage anxiety of the widespread electric vehicles.One of the biggest bottlenecks lies in the sluggish kinetics of the Li^(+)intercalation into the graphite anode;slow intercalation will lead to lithium metal plating,severe side reactions,and safety concerns.The premise to solve these problems is to fully understand the reaction pathways and rate-determining steps of graphite during fast Li^(+)intercalation.Herein,we compare the Li^(+)diffusion through the graphite particle,interface,and electrode,uncover the structure of the lithiated graphite at high current densities,and correlate them with the reaction kinetics and electrochemical performances.It is found that the rate-determining steps are highly dependent on the particle size,interphase property,and electrode configuration.Insufficient Li^(+)diffusion leads to high polarization,incomplete intercalation,and the coexistence of several staging structures.Interfacial Li^(+)diffusion and electrode transportation are the main rate-determining steps if the particle size is less than 10μm.The former is highly dependent on the electrolyte chemistry and can be enhanced by constructing a fluorinated interphase.Our findings enrich the understanding of the graphite structural evolution during rapid Li^(+)intercalation,decipher the bottleneck for the sluggish reaction kinetics,and provide strategic guidelines to boost the fast-charging performance of graphite anode. 展开更多
关键词 Fast-charging Graphite anode Cryogenic transmission electron microscopy(cryo-TEM) High-rate kinetics
下载PDF
Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni_(2)MnV and mechanical grinding induced B2–fcc transformation 被引量:1
7
作者 彭璐 张强强 +5 位作者 王娜 夏中昊 张亚九 吴志刚 刘恩克 柳祝红 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期427-433,共7页
The structure of the all-d-metal alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x=0–50)is investigated by using theoretical and experimental methods.The first-principles calculations indicate that the most stable structure of th... The structure of the all-d-metal alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x=0–50)is investigated by using theoretical and experimental methods.The first-principles calculations indicate that the most stable structure of the Ni_2MnV alloy is face-centered cubic (fcc)type structure with ferrimagnetic state and the equilibrium lattice constant is 3.60A,which is in agreement with the experimental result.It is remarkable that replacing partial Ni with Co can turn the alloy from the fcc structure to the B2-type Heusler structure as Co content x>37 by using the melting spinning method,implying that the d–d hybridization between Co/Mn elements and low-valent elements V stabilizes the Heusler structure.The Curie temperature T_(C) of all-dmetal Heuser alloy Ni_(50-x)Co_(x)Mn_(25)V_(25)(x>37)increases almost linearly with the increase of Co due to that the interaction of Co–Mn is stronger than that of Ni–Mn.A magnetic transition from ferromagnetic state to weak magnetic state accompanying with grinding stress induced transformation from B2 to the dual-phase of B2 and fcc has been observed in these all-d-metal Heusler alloys.This phase transformation and magnetic change provide a guide to overcome the brittleness and make the all-d-metal Heusler alloy interesting in stress and magnetic driving structural transition. 展开更多
关键词 all-d-metal Heusler alloy grinding induced phase transformation phase stability
原文传递
Regulated electronic structure and improved electrocatalytic performances of S-doped FeWO4 for rechargeable zinc-air batteries
8
作者 Huan Wang Li Xu +3 位作者 Daijie Deng Xiaozhi Liu Henan Li Dong Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期359-367,I0009,共10页
The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in ... The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in the multi-dimensional nitrogen-doped carbon structure(S-FeWO_(4)/NC)was successfully synthesized.The doped S atoms optimized the charge distribution in FeWO_(4)and enhanced the intrinsic activity.At the same time,S doping accelerated the formation of reaction intermediates during the adsorption reduction of O_(2)on the surface of S-FeWO_(4)/NC.Accordingly,the S-FeWO_(4)/NC catalyst showed more positive half-wave potential(0.85 V)and better stability than that of the FeWO_(4)/NC catalyst.Furthermore,the S-FeWO_(4)/NC-based zinc-air battery exhibited considerable power density of 150.3m W cm^(-2),high specific capacity of 912.7 m A h g^(-1),and prominent cycle stability up to 220 h.This work provides an assistance to the development of cheap and efficient tungsten-based oxygen reduction catalysts and the promotion of its application in the zinc-air battery. 展开更多
关键词 S doping FeWO4 Oxygen reduction reaction Zinc-air batteries
下载PDF
Optimization of large-area YBa_(2)Cu_(3)O_(7-δ)thin films by pulsed laser deposition for planar microwave devices
9
作者 熊沛雨 陈赋聪 +8 位作者 冯中沛 杨景婷 夏钰东 袁跃峰 王旭 袁洁 吴云 石兢 金魁 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期186-190,共5页
This paper presents high quality YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films on LaAlO_(3)substrate for microwave devices prepared by pulsed laser deposition(PLD).The double-sided YBCO films cover a large area and have been ... This paper presents high quality YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films on LaAlO_(3)substrate for microwave devices prepared by pulsed laser deposition(PLD).The double-sided YBCO films cover a large area and have been optimized for key parameters relevant to microwave device applications,such as surface morphology and surface resistance(R_(s)).This was achieved by improving the target quality and increasing the oxygen pressure during deposition,respectively.To evaluate the suitability of the YBCO films for microwave devices,a pair of microwave filters based on microstrip fabricated on films from this work and a commercial company were compared.The results show that the YBCO films in this work could completely meet the requirements for microwave devices. 展开更多
关键词 YBCO films pulsed laser deposition(PLD) surface resistance microwave devices
原文传递
Recent progress on fabrication and flat-band physics in 2D transition metal dichalcogenides moiré superlattices
10
作者 Xinyu Huang Xu Han +12 位作者 Yunyun Dai Xiaolong Xu Jiahao Yan Mengting Huang Pengfei Ding Decheng Zhang Hui Chen Vijay Laxmi Xu Wu Liwei Liu Yeliang Wang Yang Xu Yuan Huang 《Journal of Semiconductors》 EI CAS CSCD 2023年第1期43-55,共13页
Moiré superlattices are formed when overlaying two materials with a slight mismatch in twist angle or lattice constant. They provide a novel platform for the study of strong electronic correlations and non-trivia... Moiré superlattices are formed when overlaying two materials with a slight mismatch in twist angle or lattice constant. They provide a novel platform for the study of strong electronic correlations and non-trivial band topology, where emergent phenomena such as correlated insulating states, unconventional superconductivity, and quantum anomalous Hall effect are discovered. In this review, we focus on the semiconducting transition metal dichalcogenides(TMDs) based moiré systems that host intriguing flat-band physics. We first review the exfoliation methods of two-dimensional materials and the fabrication technique of their moiré structures. Secondly, we overview the progress of the optically excited moiré excitons, which render the main discovery in the early experiments on TMD moiré systems. We then introduce the formation mechanism of flat bands and their potential in the quantum simulation of the Hubbard model with tunable doping, degeneracies, and correlation strength. Finally, we briefly discuss the challenges and future perspectives of this field. 展开更多
关键词 flat-band physics two-dimensional materials moirésuperlattices Hubbard model moiréexcitons
下载PDF
A General Strategy for Ordered Carrier Transport of Quasi‑2D and 3D Perovskite Films for Giant Self‑Powered Photoresponse and Ultrahigh Stability
11
作者 Fei Zhu Gang Lian +5 位作者 Deliang Cui Qilong Wang Haohai Yu Huaijin Zhang Qingbo Meng Ching‑Ping Wong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期128-140,共13页
Organic–inorganic hybrid perovskite materials have been focusing more attention in the field of self-powered photodetectors due to their superb photoelectric properties.However,a universal growth approach is required... Organic–inorganic hybrid perovskite materials have been focusing more attention in the field of self-powered photodetectors due to their superb photoelectric properties.However,a universal growth approach is required and challenging to realize vertically oriented growth and grain boundary fusion of 2D and 3D perovskite grains to promote ordered carrier transport,which determines superior photoresponse and high stability.Herein,a general thermal-pressed(TP)strategy is designed to solve the above issues,achieving uniaxial orientation and single-grain penetration along the film thickness direction.It constructs the efficient channel for ordered carrier transport between two electrodes.Combining of the improved crystal quality and lower trap-state density,the quasi-2D and 3D perovskite-based self-powered photodetector devices(with/without hole transport layer)all exhibit giant and stable photoresponse in a wide spectrum range and specific wavelength laser.For the MAPbI_(3)-based self-powered photodetectors,the largest R_(λ) value is as high as 0.57 A W^(−1)at 760 nm,which is larger than most reported results.Meanwhile,under laser illumination(532 nm),the FPEA_(2)MA_(4)Pb_(5)I_(16)-based device exhibits a high responsivity(0.4 A W^(−1)) value,which is one of the best results in 2DRP self-powered photodetectors.In addition,fast response,ultralow detection limit,and markedly improved humidity,optical and heat stabilities are clearly demonstrated for these TP-based devices. 展开更多
关键词 Perovskites Thermal-pressed strategy Uniaxial orientation Self-powered photodetectors Stability
下载PDF
Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
12
作者 刘迪 王兴玉 +2 位作者 李泽众 马肖燕 李世亮 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期622-626,共5页
Uniaxial pressure or strain can introduce a symmetry-breaking distortion on the lattice and may alter the ground states of a material. Compared to hydrostatic pressure, a unique feature of the uniaxial-pressure measur... Uniaxial pressure or strain can introduce a symmetry-breaking distortion on the lattice and may alter the ground states of a material. Compared to hydrostatic pressure, a unique feature of the uniaxial-pressure measurements is that a tensile force can be applied and thus a “negative” pressure can be achieved. In doing so, both ends of the sample are usually glued on the frame of the uniaxial-pressure device. The maximum force that can be applied onto the sample is sometimes limited by the shear strength of the glue, the quality of the interface between the sample and the glue, etc. Here we use focused ion beam to reduce the width of the middle part of the sample, which can significantly increase the effective pressure applied on the sample. By applying this technique to a home-made piezobender-based uniaxial-pressure device, we can easily increase the effective pressure by one or two orders of magnitude as shown by the change of the superconducting transition temperature of an iron-based superconductor. Our method thus provides a possible way to increase the upper limit of the pressure for the uniaxial-pressure devices. 展开更多
关键词 uniaxial pressure iron-based superconductors FOCUSED-ION-BEAM
原文传递
Determination of Work Function for p-and n-Type 4H-SiC Single Crystals via Scanning Kelvin Probe Force Microscopy
13
作者 李辉 王国宾 +3 位作者 杨靖宇 张泽盛 邓俊 杜世萱 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第12期160-166,共7页
Silicon carbide(SiC) is a promising platform for fabricating high-voltage, high-frequency and high-temperature electronic devices such as metal oxide semiconductor field effect transistors in which many junctions or i... Silicon carbide(SiC) is a promising platform for fabricating high-voltage, high-frequency and high-temperature electronic devices such as metal oxide semiconductor field effect transistors in which many junctions or interfaces are involved. The work function(WF) plays an essential role in these devices. However, studies of the effect of conductive type and polar surfaces on the WF of SiC are limited. Here, we report the measurement of WFs of Si-and C-terminated polar surfaces for both p-type and n-type conductive 4H-SiC single crystals by scanning Kelvin probe microscopy(SKPFM). The results show that p-type SiC exhibits a higher WF than n-type SiC.The WF of a C-terminated polar surface is higher than that of a Si-terminated polar surface, which is further confirmed by first-principles calculations. By revealing this long-standing knowledge gap, our work facilitates the fabrication and development of SiC-based electronic devices, which have tremendous potential applications in electric vehicles, photovoltaics, and so on. This work also shows that SKPFM is a good method for identifying polar surfaces of SiC and other polar materials nondestructively, quickly and conveniently. 展开更多
关键词 terminated PROBE CONDUCTIVE
原文传递
Local Rotational Jamming and Multi-Stage Hyperuniformities in an Active Spinner System
14
作者 刘锐 巩建晓 +1 位作者 杨明成 陈科 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第12期104-108,共5页
An active system consisting of many self-spinning dimers is simulated, and a distinct local rotational jamming transition is observed as the density increases. In the low density regime, the system stays in an absorbi... An active system consisting of many self-spinning dimers is simulated, and a distinct local rotational jamming transition is observed as the density increases. In the low density regime, the system stays in an absorbing state,in which each dimer rotates independently subject to the applied torque;while in the high density regime,a fraction of the dimers become rotationally jammed into local clusters, and the system exhibits microphaseseparation like two-phase morphologies. For high enough densities, the system becomes completely jammed in both rotational and translational degrees of freedom. Such a simple system is found to exhibit rich and multiscale disordered hyperuniformities among the above phases: the absorbing state shows a critical hyperuniformity of the strongest class and subcritically preserves the vanishing density fluctuation scaling up to some length scale;the locally jammed state shows a two-phase hyperuniformity conversely beyond some length scale with respect to the phase cluster sizes;the totally jammed state appears to be a monomer crystal, but intrinsically loses large-scale hyperuniformity. These results are inspiring for designing novel phase-separation and disordered hyperuniform systems through dynamical organization. 展开更多
关键词 UNIFORM SYSTEM ROTATIONAL
原文传递
Ultrafast two-dimensional x-ray imager with temporal fiducial pulses for laser-produced plasmas
15
作者 刘正东 仲佳勇 +21 位作者 远晓辉 张雅芃 姚嘉文 马作霖 徐向晏 薛彦华 张喆 袁大伟 张敏睿 李炳均 谷昊琛 戴羽 张成龙 董玉峰 周鹏 马鑫杰 马云峰 白雪洁 刘高扬 田进寿 赵刚 张杰 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期214-219,共6页
It is challenging to make an ultrafast diagnosis of the temporal evolution of small and short-lived plasma in two dimensions. To overcome this difficulty, we have developed a well-timed diagnostic utilizing an x-ray s... It is challenging to make an ultrafast diagnosis of the temporal evolution of small and short-lived plasma in two dimensions. To overcome this difficulty, we have developed a well-timed diagnostic utilizing an x-ray streak camera equipped with a row of multi-pinhole arrays. By processing multiple sets of one-dimensional streaked image data acquired from various pinholes, we are capable of reconstructing high-resolution two-dimensional images with a temporal resolution of 38 ps and a spatial resolution of 18 μm. The temporal fiducial pulses accessed from external sources can advance the precise timing and accurately determine the arrival time of the laser. Moreover, it can correct the nonlinear sweeping speed of the streak camera. The effectiveness of this diagnostic has been successfully verified at the Shenguang-II laser facility,providing an indispensable tool for observing complex physical phenomena, such as the implosion process of laser-fusion experiments. 展开更多
关键词 ultrafast diagnosis double-cone ignition x-ray streak camera pinhole array temporal fiducial pulses
原文传递
High energy density in ultra-thick and flexible electrodes enabled by designed conductive agent/binder composite
16
作者 Xiaoyu Shen Hailong Yu +6 位作者 Liubin Ben Wenwu Zhao Qiyu Wang Guanjun Cen Ronghan Qiao Yida Wu Xuejie Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期133-143,I0005,共12页
Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated us... Thick electrodes can increase incorporation of active electrode materials by diminishing the proportion of inactive constituents,improving the overall energy density of batteries.However,thick electrodes fabricated using the conventional slurry casting approach frequently exhibit an exacerbated accumulation of carbon additives and binders on their surfaces,invariably leading to compromised electrochemical properties.In this study,we introduce a designed conductive agent/binder composite synthesized from carbon nanotube and polytetrafluoroethylene.This agent/binder composite facilitates production of dry-process-prepared ultra-thick electrodes endowed with a three-dimensional and uniformly distributed percolative architecture,ensuring superior electronic conductivity and remarkable mechanical resilience.Using this approach,ultra-thick LiCoO_(2)(LCO) electrodes demonstrated superior cycling performance and rate capabilities,registering an impressive loading capacity of up to 101.4 mg/cm^(2),signifying a 242% increase in battery energy density.In another analytical endeavor,time-of-flight secondary ion mass spectroscopy was used to clarify the distribution of cathode electrolyte interphase(CEI) in cycled LCO electrodes.The results provide unprecedented evidence explaining the intricate correlation between CEI generation and carbon distribution,highlighting the intrinsic advantages of the proposed dry-process approach in fine-tu ning the CEI,with excellent cycling performance in batteries equipped with ultra-thick electrodes. 展开更多
关键词 Conductive agent/binder composite Dry process Ultra-thick electrodes High energy density CEI reconstruction ToF-SIMS
下载PDF
Databases of 2D material-substrate interfaces and 2D charged building blocks
17
作者 邓俊 潘金波 杜世萱 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期34-38,共5页
Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new mater... Discovery of materials using“bottom-up”or“top-down”approach is of great interest in materials science.Layered materials consisting of two-dimensional(2D)building blocks provide a good platform to explore new materials in this respect.In van der Waals(vdW)layered materials,these building blocks are charge neutral and can be isolated from their bulk phase(top-down),but usually grow on substrate.In ionic layered materials,they are charged and usually cannot exist independently but can serve as motifs to construct new materials(bottom-up).In this paper,we introduce our recently constructed databases for 2D material-substrate interface(2DMSI),and 2D charged building blocks.For 2DMSI database,we systematically build a workflow to predict appropriate substrates and their geometries at substrates,and construct the 2DMSI database.For the 2D charged building block database,1208 entries from bulk material database are identified.Information of crystal structure,valence state,source,dimension and so on is provided for each entry with a json format.We also show its application in designing and searching for new functional layered materials.The 2DMSI database,building block database,and designed layered materials are available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00188. 展开更多
关键词 2D material-substrate interfaces charged building block database functional-oriented materials design layered materials density functional theory
原文传递
Quantum synchronization with correlated baths
18
作者 李磊 王春辉 +2 位作者 尹洪浩 王如泉 刘伍明 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期152-157,共6页
We study quantum synchronization under the nonequilibrium reservoirs.We consider a two-qubit XXZ chain coupled independently to their own reservoirs modeled by the collisional model.Two reservoir particles,initially p... We study quantum synchronization under the nonequilibrium reservoirs.We consider a two-qubit XXZ chain coupled independently to their own reservoirs modeled by the collisional model.Two reservoir particles,initially prepared in a thermal state or a state with coherence,are correlated through a unitary transformation and afterward interact locally with the two quantum subsystems.We study the quantum effect of reservoir on synchronous dynamics of system.By preparing different reservoir initial states or manipulating the reservoir particles coupling and the temperature gradient,we find that quantum entanglement of reservoir is the key to control quantum synchronization of system qubits. 展开更多
关键词 quantum synchronization ENTANGLEMENT quantum coherence nonequilibrium reservoir
原文传递
Maskless fabrication of quasi-omnidirectional V-groove solar cells using an alkaline solution-based method
19
作者 陈兴谦 王燕 +6 位作者 陈伟 刘尧平 邢国光 冯博文 李昊臻 孙纵横 杜小龙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期236-242,共7页
Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid text... Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid texture, the V-groove texture possesses superior effective minority carrier lifetime, enhanced p–n junction quality and better applied filling factor(FF). In addition, a V-groove texture can greatly reduce the shading area and edge damage of front Ag electrodes when the V-groove direction is parallel to the gridline electrodes. Due to these factors, the V-groove solar cells have a higher efficiency(21.78%) than pyramid solar cells(21.62%). Interestingly, external quantum efficiency(EQE) and reflectance of the V-groove solar cells exhibit a slight decrease when the incident light angle(θ) is increased from 0° to 75°, which confirms the excellent quasi omnidirectionality of the V-groove solar cells. The proposed V-groove solar cell design shows a 2.84% relative enhancement of energy output over traditional pyramid solar cells. 展开更多
关键词 V-groove alkaline etching quasi omnidirectionality silicon solar cell
原文传递
Optical study of magnetic topological insulator MnBi_(4)Te_7
20
作者 廖知裕 沈冰 +1 位作者 邱祥冈 许兵 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期231-235,共5页
We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency opti... We present an infrared spectroscopy study of the magnetic topological insulator MnBi_(4)Te_7 with antiferromagnetic(AFM) order below the Neel temperature TN= 13 K. Our investigation reveals that the low-frequency optical conductivity consists of two Drude peaks, indicating a response of free carriers involving multiple bands. Interestingly, the narrow Drude peak grows strongly as the temperature decreases, while the broad Drude peak remains relatively unchanged. The onset of interband transitions starts around 2000 cm^(-1), followed by two prominent absorption peaks around 10000 cm^(-1) and 20000 cm^(-1). Upon cooling, there is a notable transfer of spectral weight from the interband transitions to the Drude response. Below TN, the AFM transition gives rise to small anomalies of the charge response due to a band reconstruction.These findings provide valuable insights into the interplay between magnetism and the electronic properties in MnBi_(4)Te_7. 展开更多
关键词 infrared spectroscopy magnetic topological insulator Drude model band reconstruction
原文传递
上一页 1 2 85 下一页 到第
使用帮助 返回顶部