期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A novel approach of jet polishing for interior surface of small-grooved components using three developed setups
1
作者 Qinming Gu Zhenyu Zhang +6 位作者 Hongxiu Zhou Jiaxin Yu Dong Wang Junyuan Feng Chunjing Shi Jianjun Yang Junfeng Qi 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期428-447,共20页
It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanw... It is a challenge to polish the interior surface of an additively manufactured component with complex structures and groove sizes less than 1 mm.Traditional polishing methods are disabled to polish the component,meanwhile keeping the structure intact.To overcome this challenge,small-grooved components made of aluminum alloy with sizes less than 1 mm were fabricated by a custom-made printer.A novel approach to multi-phase jet(MPJ)polishing is proposed,utilizing a self-developed polisher that incorporates solid,liquid,and gas phases.In contrast,abrasive air jet(AAJ)polishing is recommended,employing a customized polisher that combines solid and gas phases.After jet polishing,surface roughness(Sa)on the interior surface of grooves decreases from pristine 8.596μm to 0.701μm and 0.336μm via AAJ polishing and MPJ polishing,respectively,and Sa reduces 92%and 96%,correspondingly.Furthermore,a formula defining the relationship between linear energy density and unit defect volume has been developed.The optimized parameters in additive manufacturing are that linear energy density varies from 0.135 J mm^(-1)to 0.22 J mm^(-1).The unit area defect volume achieved via the optimized parameters decreases to 1/12 of that achieved via non-optimized ones.Computational fluid dynamics simulation results reveal that material is removed by shear stress,and the alumina abrasives experience multiple collisions with the defects on the heat pipe groove,resulting in uniform material removal.This is in good agreement with the experimental results.The novel proposed setups,approach,and findings provide new insights into manufacturing complex-structured components,polishing the small-grooved structure,and keeping it unbroken. 展开更多
关键词 abrasive air jet polishing multi-phase jet polishing interior curved surface small-grooved component aluminum alloy
下载PDF
Highly Thermally Conductive and Structurally Ultra‑Stable Graphitic Films with Seamless Heterointerfaces for Extreme Thermal Management
2
作者 Peijuan Zhang Yuanyuan Hao +17 位作者 Hang Shi Jiahao Lu Yingjun Liu Xin Ming Ya Wang Wenzhang Fang Yuxing Xia Yance Chen Peng Li Ziqiu Wang Qingyun Su Weidong Lv Ji Zhou Ying Zhang Haiwen Lai Weiwei Gao Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期383-397,共15页
Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme altern... Highly thermally conductive graphitic film(GF)materials have become a competitive solution for the thermal management of high-power electronic devices.However,their catastrophic structural failure under extreme alternating thermal/cold shock poses a significant challenge to reliability and safety.Here,we present the first investigation into the structural failure mechanism of GF during cyclic liquid nitrogen shocks(LNS),which reveals a bubbling process characterized by“permeation-diffusion-deformation”phenomenon.To overcome this long-standing structural weakness,a novel metal-nanoarmor strategy is proposed to construct a Cu-modified graphitic film(GF@Cu)with seamless heterointerface.This well-designed interface ensures superior structural stability for GF@Cu after hundreds of LNS cycles from 77 to 300 K.Moreover,GF@Cu maintains high thermal conductivity up to 1088 W m^(−1)K^(−1)with degradation of less than 5%even after 150 LNS cycles,superior to that of pure GF(50%degradation).Our work not only offers an opportunity to improve the robustness of graphitic films by the rational structural design but also facilitates the applications of thermally conductive carbon-based materials for future extreme thermal management in complex aerospace electronics. 展开更多
关键词 Highly thermally conductive Structurally ultra-stable Graphitic film Extreme thermal management Liquid nitrogen bubbling
下载PDF
Finite Element Analysis and Experiment on Viscous Warm Pressure Bulging of AZ31B Magnesium Alloy 被引量:1
3
作者 高铁军 ZHANG Wenzhuo +1 位作者 XU Menglong WANG Zhongjin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期640-644,共5页
Aiming at overcoming the low plasticity of magnesium alloy at room temperature, we researched viscous warm pressure bulging(VWPB) of AZ31B magnesium alloy based on the excellent thermal stability of viscous medium u... Aiming at overcoming the low plasticity of magnesium alloy at room temperature, we researched viscous warm pressure bulging(VWPB) of AZ31B magnesium alloy based on the excellent thermal stability of viscous medium under the warm forming condition. The potential improvements of plastic deformation ability and forming quality of AZ31B magnesium alloy are expected with the aid of thermal characteristics of viscous medium. During bulging process the velocity field variation and pressure stress field distribution of viscous medium are observed at different temperatures through which the effect of temperature on the mechanical property of viscous medium and AZ31B magnesium alloy are analyzed. The results show that the formability of AZ31B magnesium alloy increases first and then decreases as the temperature increases and it is the best at 200 ℃. On the other hand, the viscous medium which can build non-uniform pressure stress field also exhibits a good flow property at elevated temperature, and it is helpful to improving the formability of AZ31B magnesium alloy. 展开更多
关键词 viscous warm pressure bulging AZ31B magnesium alloy formability flow property
原文传递
Belief reliability modeling and analysis for planetary reducer considering multi-source uncertainties and wear
4
作者 LI Yun JIANG Kaige +4 位作者 ZENG Ting CHEN Wenbin LI Xiaoyang LI Deyong ZHANG Zhiqiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1246-1262,共17页
The planetary reducer is a common type of transmission mechanism,which can provide high transmission accuracy and has been widely used,and it is usually required with high reliability of transmission characteristics i... The planetary reducer is a common type of transmission mechanism,which can provide high transmission accuracy and has been widely used,and it is usually required with high reliability of transmission characteristics in practice.During the manufacturing and usage stages of planetary reducers,uncertainties are ubiquitous and wear is inevitable,which affect the transmission characteristics and the reliability of planetary reducers.In this paper,belief reliability modeling and analysis considering multi-uncertainties and wear are proposed for planetary reducers.Firstly,based on the functional principle and the influence of wear,the performance margin degradation model is established using the hysteresis error as the key performance parameter,where the degradation is mainly caused by the accumulated wear.After that,multi-source uncertainties are analyzed and quantified separately,including manufacturing errors,uncertainties in operational and environmental conditions,and uncertainties in performance thresholds.Finally,the belief reliability model is established based on the performance margin degradation model.A case study of a planetary reducer is applied and the reliability sensitivity analysis is implemented to show the practicability of the proposed method.The results show that the proposed method can provide some suggestions to the design and manufacturing phases of the planetary reducer. 展开更多
关键词 belief reliability planetary reducer performance margin WEAR multi-source uncertainty
下载PDF
Applications of magnesium alloys for aerospace:A review 被引量:3
5
作者 Jingying Bai Yan Yang +5 位作者 Chen Wen Jing Chen Gang Zhou Bin Jiang Xiaodong Peng Fusheng Pan 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3609-3619,共11页
With the increasingly excellent performance of magnesium alloy materials, magnesium alloys are increasingly widely used under the urgent need for weight reduction in aerospace applications. However, due to the severe ... With the increasingly excellent performance of magnesium alloy materials, magnesium alloys are increasingly widely used under the urgent need for weight reduction in aerospace applications. However, due to the severe aviation environment, the strength, corrosion resistance and electrical conductivity of magnesium alloy materials need to be further improved. Many scholars are committed to studying higher comprehensive mechanical properties. Besides, they have studied surface treatment processes with space application characteristics, such as high emissivity oxidation and high anti-corrosion electroplating. To further improve the safety and reliability of magnesium alloys and expand their applications, this paper discusses several kinds of magnesium alloys and summarizes their research progress. The whole manuscript should be revised by an expert who has more experience on English writing. At the same time, the surface treatments of magnesium alloy materials for aerospace are analyzed. Besides, the application of magnesium alloy in aerospace field is summarized. With the in-depth research of many scholars, the improvement of material properties and the development of surface protection and functional technology, it is believed that magnesium alloys will be used in more and more aerospace applications and make more contributions to the aerospace field. 展开更多
关键词 Magnesium alloy AEROSPACE APPLICATION REVIEW Surface treatment
下载PDF
Enhanced tribological properties of aligned graphene-epoxy composites 被引量:2
6
作者 Yuefeng DU Zhenyu ZHANG +8 位作者 Dong WANG Lezhen ZHANG Junfeng CUI Yapeng CHEN Mingliang WU Ruiyang KANG Yunxiang LU Jinhong YU Nan JIANG 《Friction》 SCIE EI CAS CSCD 2022年第6期854-865,共12页
The random distribution of graphene in epoxy matrix hinders the further applications of grapheneepoxy composites in the field of tribology.Hence,in order to fully utilize the anisotropic properties of graphene,highly ... The random distribution of graphene in epoxy matrix hinders the further applications of grapheneepoxy composites in the field of tribology.Hence,in order to fully utilize the anisotropic properties of graphene,highly aligned graphene-epoxy composites(AGEC)with horizontally oriented structure have been fabricated via an improved vacuum filtration freeze-drying method.The frictional tests results indicated that the wear rate of AGEC slowly increased from 5.19x10^(-6)mm^(3)/(N-m)to 2.87x10^(-5)mm^(3)/(N-m)with the increasing of the normal load from 2 to 10 N,whereas the friction coefficient(COF)remained a constant of 0.109.Compared to the neat epoxy and random graphene-epoxy composites(RGEC),the COF of AGEC was reduced by 87.5%and 71.2%,and the reduction of wear rate was 86.6%and 85.4%at most,respectively.Scanning electron microscope(SEM)observations illustrated that a compact graphene self-lubricant film was formed on the worn surface of AGEC,which enables AGEC to possess excellent tribological performance.Finally,in light of the excellent tribological properties of AGEC,this study highlights a pathway to expand the tribological applications of graphene-epoxy composites. 展开更多
关键词 GRAPHENE ALIGNED epoxy composite tribological performance
原文传递
Illumination and regolith temperature at China's next candidate lunar landing site Shackleton crater 被引量:2
7
作者 Zhen ZHONG Jianguo YAN +3 位作者 Huaiyu HE Qiling WEN Deyun LIU Jean-Pierre BARRIOT 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第2期417-429,共13页
This study focuses on the illumination and temperature at China’s next lunar candidate landing site Shackleton crater.We used the NASA’s SPICE system to evaluate the terrain obscuration effect on real-time illuminat... This study focuses on the illumination and temperature at China’s next lunar candidate landing site Shackleton crater.We used the NASA’s SPICE system to evaluate the terrain obscuration effect on real-time illumination;the resulting illumination map resembles previous studies,validating the methodologies used in our study.In addition,we estimated an accumulated illumination map for the period of likely rover movement.The map indicates the illuminated inner wall of the Shackleton crater is close to 27%of the whole,meaning that the rover will likely receive solar radiation during its movement.Using the real-time illumination and the distributed 1-D thermal diffusion model,we continuously evaluated the regolith temperature for more than 20 years to stabilize the temperature,and selected the temperature of the end time as the initial value used in a thermal study set for July 20,2023 and May 8,2027.Our results indicate the temperature in the permanent shadow region remains nearly constant,thus validating the stability of our estimated initial temperature.Our results also indicate that the surface temperature is more sensitive to transient illumination,but the subsurface temperature is more likely to be associated with the accumulated illumination.This difference indirectly implies that the conductivity of the lunar regolith is inefficient.The locations receiving more solar radiation show a temperature larger than the threshold(~112 K)of ice stability.The permanently shadowed regions can be as cold as 25 K,and such extreme coldness is a hazard to the rover.There are suitable temperature locations which have a warm surface but cold subsurface to preserve water ice.To further ensure normal rover movement,we provided a map of suitable temperature sites and found that these locations exist not only in the Shackleton crater’s inner wall,but also outside the crater.We suggested four trade-off sampling sites with suitable temperatures and gradual slopes. 展开更多
关键词 Real-time illumination Regolith temperature Shackleton crater Map of landing site
原文传递
Rapid Ultrasonic-Assisted Soldering of AZ31B Mg Alloy/6061 Al Alloy with Low-Melting-Point Sn–xZn Solders Without Flux in Air 被引量:1
8
作者 Zhi-Wei Lai Zhe-Yuan Huang +5 位作者 Chuan Pan Hui-Qiao Du Xiao-Guang Che Lei Liu Wei-Ming Long Gui-Sheng Zou 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第3期332-342,共11页
A novel ultrasonic-assisted low-temperature soldering was developed to join AZ31B Mg alloy and 6061 Al alloy with a series of Sn–x Zn solders. The average maximum shear strength of the joints reaches up to 87.5 MPa a... A novel ultrasonic-assisted low-temperature soldering was developed to join AZ31B Mg alloy and 6061 Al alloy with a series of Sn–x Zn solders. The average maximum shear strength of the joints reaches up to 87.5 MPa at soldering temperature of 300 °C under ultrasonic assistance for only 5 s using Sn–20 Zn solder. The fracture path propagates completely in the soldering seam. The results indicate that the microjet generated by ultrasonic pressure in liquid solder could strike and splinter the Mg_2Sn intermetallic compounds into small pieces, which contributes to the enhancement of the joint strength. In addition, the primary Al(Zn) solid solution phase formed during cooling stage could also strengthen the joint due to the prevention of microcracks propagation. 展开更多
关键词 ULTRASONIC-ASSISTED SOLDERING Ultrasonic effect mechanism MICROJET INTERMETALLIC compound distribution Solid solution Joint strengthening
原文传递
Developing Prototype Simulants for Surface Materials and Morphology of Near Earth Asteroid 2016 HO3
9
作者 Xiaojing Zhang Yuechen Luo +3 位作者 Yuan Xiao Deyun Liu Fan Guo Qian Guo 《Space(Science & Technology)》 2021年第1期50-55,共6页
There are a variety of applications for asteroid simulants in asteroid studies for science advances as well as technology maturation.For specific purpose,it usually requires purpose-specialized simulant.In this study,... There are a variety of applications for asteroid simulants in asteroid studies for science advances as well as technology maturation.For specific purpose,it usually requires purpose-specialized simulant.In this study,we designed and developed a set of prototype simulants as S-type asteroid surface materials analogue based on H,L,and LL ordinary chondrites’mineralogy and terrestrial observations of near-earth asteroid 2016 HO3,which is the Chinese sample return mission target.These simulants are able to simulate morphology and reflectance characteristics of asteroid(469219)2016 HO3 and,thus,to be used for engineering evaluation of the optical navigation system and the sampling device of the spacecraft during the mission phase.Meanwhile,these prototype simulants are easily to modify to reflect new findings on the asteroid surface when the spacecraft makes proximate observations. 展开更多
关键词 EARTH TERRESTRIAL RETURN
原文传递
Mechanical design and analysis of bio-inspired reentrant negative Poisson’s ratio metamaterials with rigid-flexible distinction
10
作者 Xinchun Zhang Junyu Wang +4 位作者 Qidong Sun Jingyang Li Sheng Zhou Junfeng Qi Ran Tao 《International Journal of Smart and Nano Materials》 SCIE EI 2024年第1期1-20,共20页
Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theor... Aiming at achieving tunable reentrant structures with rigidity and uniformity,respectively,the C-shaped and S-shaped reentrant metamaterials were proposed by the bionic design of animal structures.Utilizing beam theory and energy methodology,the analytical expressions of the equivalent elastic modulus of the metamaterials were derived.Differences in deformation modes,mechanical properties,and energy absorption capacities were characterized by using experiments and the finite element analysis method.The effects of ligament angle and thickness on the mechanical characteristics of two novel metamaterials were investigated by using a parametric analysis.The results show that the stiffness,deformation mode,stress-strain curve,and energy absorption effects of three metamaterials are significantly different.This design philosophy can be extended from 2D to 3D and is applicable at multiple dimensions. 展开更多
关键词 Re-entrant mechanical metamaterials negative poisson’s ratio enhanced stiffness rigid-flexible distinction energy absorption
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部