Culture conditions of desulfurization microbes were investigated with a bioreactor controlled by computer. Factors such as pH, choice of carbon source, optimal concentrations of carbon, nitrogen and sulfur sources wer...Culture conditions of desulfurization microbes were investigated with a bioreactor controlled by computer. Factors such as pH, choice of carbon source, optimal concentrations of carbon, nitrogen and sulfur sources were determined. The addition of carbon in a culture with a constant pH greatly improved the growth of Rhodococcus. Cells and cell debris from microbes rested using a sulfur-specific pathway were used to desulfurize diesel oil treated by hy-drodesulfurization (acquired from the Research Institute of Fushun Petroleum with total sulfur level at 205μg/mL). Strains lawq, IG, X7B, ZT, ZCR, and a mixture of No. 5 and No. 6, were used in the biodesulfurization process. The reduction of total sulfur was between 10.6% and 90.3%.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 29977011), and the Visiting Scholar Foundation for Key Laboratory in University, the Ministry of Education of China (State Key Lab of Bioreactor Engineering, East Chin
文摘Culture conditions of desulfurization microbes were investigated with a bioreactor controlled by computer. Factors such as pH, choice of carbon source, optimal concentrations of carbon, nitrogen and sulfur sources were determined. The addition of carbon in a culture with a constant pH greatly improved the growth of Rhodococcus. Cells and cell debris from microbes rested using a sulfur-specific pathway were used to desulfurize diesel oil treated by hy-drodesulfurization (acquired from the Research Institute of Fushun Petroleum with total sulfur level at 205μg/mL). Strains lawq, IG, X7B, ZT, ZCR, and a mixture of No. 5 and No. 6, were used in the biodesulfurization process. The reduction of total sulfur was between 10.6% and 90.3%.