Al-Halabi is an intriguing ophthalmologist who invented numerous surgicalinstruments for treating various eye diseases. The illustrations of such instrumentsin his invaluable book “Kitab Al-Kafi fi Al-Kuhl” reflect ...Al-Halabi is an intriguing ophthalmologist who invented numerous surgicalinstruments for treating various eye diseases. The illustrations of such instrumentsin his invaluable book “Kitab Al-Kafi fi Al-Kuhl” reflect his willingness toteach. Moreover, he included in his book a magnificent illustration of theanatomical structure of the eye. The book reflects Al-Halabi’s medical practice andteaching and shows several advanced medical techniques and tools. Hisinvaluable comments reflect his deep experimental observations in the field ofophthalmology. The current article provides proof that Al-Halabi is one of ourearly biomedical engineers from more than 800 years ago. Al-Halabi represents aring in the chain of biomedical engineering history. His surgical instrumentsrepresent the biomechanics field. Al-Halabi should be acknowledged among thebiomedical engineering students for his various contributions in the field ofsurgical instruments.展开更多
Needles,as some of the most widely used medical devices,have been effectively applied in human disease prevention,diagnosis,treatment,and rehabilitation.Thin 1D needle can easily penetrate cells/organs by generating h...Needles,as some of the most widely used medical devices,have been effectively applied in human disease prevention,diagnosis,treatment,and rehabilitation.Thin 1D needle can easily penetrate cells/organs by generating highly localized stress with their sharp tips to achieve bioliquid sampling,biosensing,drug delivery,surgery,and other such applications.In this review,we provide an overview of multiscale needle fabrication techniques and their biomedical applications.Needles are classified as nanoneedles,microneedles and millineedles based on the needle diameter,and their fabrication techniques are highlighted.Nanoneedles bridge the inside and outside of cells,achieving intracellular electrical recording,biochemical sensing,and drug delivery.Microneedles penetrate the stratum corneum layer to detect biomarkers/bioelectricity in interstitial fluid and deliver drugs through the skin into the human circulatory system.Millineedles,including puncture,syringe,acupuncture and suture needles,are presented.Finally,conclusions and future perspectives for next-generation nano/micro/milli needles are discussed.展开更多
This paper expounds professional characteristics of biomedical engineering in our school, and analyses some problems lying in it, emphatically discusses advantages and the problems combining biomedical engineering wit...This paper expounds professional characteristics of biomedical engineering in our school, and analyses some problems lying in it, emphatically discusses advantages and the problems combining biomedical engineering with the medical courses in order to offer targeted solutions. It summarizes the results and problems so as to provide reference value to a new major.展开更多
Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/ch...Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/chiral assembly and 3D printing technology,providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries.We designed reactive chiral inks based on cellulose nanocrystal(CNC)suspensions and acrylamide monomers,enabling the chiral assembly at nano/microscale,beyond the resolution seen in printed materials.We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions.These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks,and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates,as well as their post-flow relaxation.Furthermore,we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath.These insights into the interplay between the chiral inks self-assembly dynamics,3D printing flow kinematics and photopolymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments,ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length,as well as random orientation of chiral domains.Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs.展开更多
Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. ...Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.展开更多
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers,that are promising for tissue engineering and regenerative medicine.Microgels ...Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers,that are promising for tissue engineering and regenerative medicine.Microgels can also be aggregated into microporous scaffolds,promoting cell infiltration and proliferation for tissue repair.This review gives an overview of recent developments in the fabrication techniques and applications of microgels.A series of conventional and novel strategies including emulsification,microfluidic,lithography,electrospray,centrifugation,gas-shearing,three-dimensional bioprinting,etc.are discussed in depth.The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy.Additionally,we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering.Through stimulating innovative ideas,the present review paves new avenues for expanding the application of microgels in cell delivery techniques.展开更多
Cellular biomechanical features contributed to the occurrence and development of various physiological andpathological phenomena. Micropillar arrays have emerged as an important tool for both the assessment andmanipul...Cellular biomechanical features contributed to the occurrence and development of various physiological andpathological phenomena. Micropillar arrays have emerged as an important tool for both the assessment andmanipulation of cellular biomechanical characteristics. This comprehensive review provides an in-depthunderstanding of the fabrication methodologies of micropillar arrays and their applications in deciphering and finetuning cellular biomechanical properties and the innovative experimental platforms including organ-on-a-chip andorganoids-on-a-chip. This review provides novel insights into the potential of micropillar technology, poised toupdate the landscape of stem cell research and tissue engineering.展开更多
Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)...Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)and hydrophobic outer layer has been created.The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants.The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal waterabsorbing capacity and air permeability.The TNM dramatically elevates the water contact angles from 10°(inner layer)to 120(outer layer),indicating an asymmetric wettability,which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing.Furthermore,the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run,respectively.In addition,the TNM shows superior biocompatibility towards L929 cells.The in vivo results show the TNM could prevent infection,accelerate epithelial regeneration and significantly accelerate wound healing.This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.展开更多
Electrocatalytic water splitting has been identified as a potential candidate for producing clean hydrogen energy with zero carbon emission.However,the sluggish kinetics of oxygen evolution reaction on the anode side ...Electrocatalytic water splitting has been identified as a potential candidate for producing clean hydrogen energy with zero carbon emission.However,the sluggish kinetics of oxygen evolution reaction on the anode side of the watersplitting device significantly hinders its practical applications.Generally,the efficiency of oxygen evolution processes depends greatly on the availability of cost‐effective catalysts with high activity and selectivity.In recent years,extensive theoretical and experimental studies have demonstrated that cobalt(Co)‐based nanomaterials,especially low‐dimensional Co‐based nanomaterials with a huge specific surface area and abundant unsaturated active sites,have emerged as versatile electrocatalysts for oxygen evolution reactions,and thus,great progress has been made in the rational design and synthesis of Co‐based nanomaterials for electrocatalytic oxygen evolution reactions.Considering the remarkable progress in this area,in this timely review,we highlight the most recent developments in Co‐based nanomaterials relating to their dimensional control,defect regulation(conductivity),electronic structure regulation,and so forth.Furthermore,a brief conclusion about recent progress achieved in oxygen evolution on Co‐based nanomaterials,as well as an outlook on future research challenges,is given.展开更多
Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vi...Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vivo degradation presents challenges,notably in upholding mechanical integrity over time.This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy,ZX10.Utilizing rapid,cost-efficient characterization methods like X-ray diffraction and optical microscopy,we swiftly examine microstructural changes post-thermal treatment.Employing Pearson correlation coefficient analysis,we unveil the relationship between microstructural properties and critical targets(properties):hardness and corrosion resistance.Additionally,leveraging the least absolute shrinkage and selection operator(LASSO),we pinpoint the dominant microstructural factors among closely correlated variables.Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca_(2)Mg_(6)Zn_(3)phase in corrosion behavior.This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases.This thorough investigation furnishes valuable insights into the intricate interplay of processing,structure,and properties in magnesium alloys,thereby advancing the development of superior biodegradable implant materials.展开更多
Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and character...Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and characterization of Calcium-based biocomposites: Hydroxyapatite (HAP), and PVA-Gelatin-HAP films. For the preparation of Calcium-based biocomposites, an unconventional source, the waste material calcite stone, was used as calcium raw material, and by the process of calcination, calcium oxide was synthesized. From calcium oxide, HAP was prepared by chemical precipitation method, which was later added in different proportions to PVA-Gelatin solution and finally dried to form biocomposite films. Then the different properties of PVA/Gelatin/HAP composite, for instance, chemical, mechanical, thermal, and swelling properties due to the incorporation of various proportions of HAP in PVA-Gelatin solution, were investigated. The characterization of the HAP was conducted by X-ray Diffraction Analysis, and the characterization of HAP-PVA-Gelatin composites was done by Fourier Transform Infrared Spectroscopy, Thermomechanical Analysis, Tensile test, Thermogravimetric Differential Thermal Analysis, and Swelling Test. The produced biocomposite films might have applications in orthopedic implants, drug delivery, bone tissue engineering, and wound healing.展开更多
As an important phenomenon to monitor disease development,cell signaling usually takes place at the interface between organisms/cells or between organisms/cells and abiotic materials.Therefore,finding a strategy to bu...As an important phenomenon to monitor disease development,cell signaling usually takes place at the interface between organisms/cells or between organisms/cells and abiotic materials.Therefore,finding a strategy to build the specific biomedical interfaces will help regulate information transmission and produce better therapeutic results to benefit patients.In the past decades,plasmas containing energetic and active species have been employed to construct various interfaces to meet biomedical demands such as bacteria inactivation,tissue regeneration,cancer therapy,and so on.Based on the potent functions of plasma modified surfaces,this mini-review is aimed to summarize the state-of-art plasma-activated interfaces and provide guidance to researchers to select the proper plasma and processing conditions to design and prepare interfaces with the optimal biological and related functions.After a brief introduction,plasma-activated interfaces are described and categorized according to different criteria including direct plasma-cells interfaces and indirect plasma-material-cells interfaces and recent research activities on the application of plasma-activated interfaces are described.The authors hope that this mini-review will spur interdisciplinary research efforts in this important area and expedite associated clinical applications.展开更多
Peripheral nerve injuries remain a challenging problem in need of better treatment strategies.Despite best efforts at surgical reconstruction and postoperative rehabilitation,patients are often left with persistent,de...Peripheral nerve injuries remain a challenging problem in need of better treatment strategies.Despite best efforts at surgical reconstruction and postoperative rehabilitation,patients are often left with persistent,debilitating motor and sensory deficits.There are currently no therapeutic strategies proven to enhance the regenerative process in humans.A clinical need exists for the development of technologies to promote nerve regeneration and improve functional outcomes.Recent advances in the fields of tissue engineering and nanotechnology have enabled biomaterial scaffolds to modulate the host response to tissue repair through tailored mechanical,chemical,and conductive cues.New bioengineered approaches have enabled targeted,sustained delivery of protein therapeutics with the capacity to unlock the clinical potential of a myriad of neurotrophic growth factors that have demonstrated promise in enhancing regenerative outcomes.As such,further exploration of combinatory strategies leveraging these technological advances may offer a pathway towards clinically translatable solutions to advance the care of patients with peripheral nerve injuries.This review first presents the various emerging bioengineering strategies that can be applied for the management of nerve gap injuries.We cover the rationale and limitations for their use as an alternative to autografts,focusing on the approaches to increase the number of regenerating axons crossing the repair site,and facilitating their growth towards the distal stump.We also discuss the emerging growth factor-based therapeutic strategies designed to improve functional outcomes in a multimodal fashion,by accelerating axonal growth,improving the distal regenerative environment,and preventing end-organs atrophy.展开更多
If the 20th century was the age of mapping and controlling the external world,the 21st century is the biomedical age of mapping and controlling the biological internal world.The biomedical age is bringing new technolo...If the 20th century was the age of mapping and controlling the external world,the 21st century is the biomedical age of mapping and controlling the biological internal world.The biomedical age is bringing new technological breakthroughs for sensing and controlling human biomolecules,cells,tissues,and organs,which underpin new frontiers in the biomedical discovery,data,biomanufacturing,and translational sciences.This article reviews what we believe will be the next wave of biomedical engineering(BME)education in support of the biomedical age,what we have termed BME 2.0.BME 2.0 was announced on October 122017 at BMES 49(https://www.bme.jhu.edu/news-events/news/miller-opens-2017-bmes-annual-meeting-with-vision-for-new-bme-era/).We present several principles upon which we believe the BME 2.0 curriculum should be constructed,and from these principles,we describe what view as the foundations that form the next generations of curricula in support of the BME enterprise.The core principles of BME 2.0 education are(a)educate students bilingually,from day 1,in the languages of modern molecular biology and the analytical modeling of complex biological systems;(b)prepare every student to be a biomedical data scientist;(c)build a unique BME community for discovery and innovation via a vertically integrated and convergent learning environment spanning the university and hospital systems;(d)champion an educational culture of inclusive excellence;and(e)codify in the curriculum ongoing discoveries at the frontiers of the discipline,thus ensuring BME 2.0 as a launchpad for training the future leaders of the biotechnology marketplaces.We envision that the BME 2.0 education is the path for providing every student with the training to lead in this new era of engineering the future of medicine in the 21st century.展开更多
Biomedical magnesium is an ideal material for hard tissue repair and replacement.However,its rapid degradation and infection after implantation significantly hindersclinical applications.To overcome these two critical...Biomedical magnesium is an ideal material for hard tissue repair and replacement.However,its rapid degradation and infection after implantation significantly hindersclinical applications.To overcome these two critical drawbacks,we describe an integrated strategybased on the changes in pH and Mg^(2+)triggered by magnesiumdegradation.This system can simultaneously offer anticorrosion and antibacterial activity.First,nanoengineered peptide-grafted hyperbranched polymers(NPGHPs)with excellent antibacterial activity were introduced to sodium alginate(SA)to construct a sensitive NPGHPs/SA hydrogel.The swelling degree,responsiveness,and antibacterial activity were then investigated,indicating that the system can perform dual stimulation of pH and Mg^(2+)with controllable antimicrobial properties.Furthermore,an intelligent platform was constructed by coating hydrogels on magnesium with polydopamine as the transition layer.The alkaline environment generated by the corrosion of magnesium reduces the swelling degree of the coatingso that the liquid is unfavorable for contacting the substrate,thus exhibiting superior corrosion resistance.Antibacterial testing shows that the material can effectively fight against bacteria,while hemolytic and cytotoxicity testing suggest that it is highly biocompatible.Thus,this work realizes the smart integration of anticorrosion and antibacterial properties of biomedical magnesium,thereby providing broader prospects for the use of magnesium.展开更多
In the article“BME 2.0:Engineering the Future of Medicine”[1],the competing interests statement was inadvertently omitted by the publisher from the published version of the article.This has now been corrected in the...In the article“BME 2.0:Engineering the Future of Medicine”[1],the competing interests statement was inadvertently omitted by the publisher from the published version of the article.This has now been corrected in the PDF and HTML(full text).展开更多
The field of biomedical imaging has been revolutionized by deep learning techniques.This special issue is focused on the theme of“AI-based Image Analysis”.Because there are so many conferences and journals in this f...The field of biomedical imaging has been revolutionized by deep learning techniques.This special issue is focused on the theme of“AI-based Image Analysis”.Because there are so many conferences and journals in this field,our special issue can only be a small snapshot of a much bigger and highly dynamic picture.In this special issue,we present six papers that highlight the power of deep learning in solving challenging biomedical imaging and image analysis problems.展开更多
This study investigates the aftermath of a significant train derailment and vinyl chloride release incident in East Palestine, Ohio, with a particular focus on the analysis of precipitation acidity changes and the con...This study investigates the aftermath of a significant train derailment and vinyl chloride release incident in East Palestine, Ohio, with a particular focus on the analysis of precipitation acidity changes and the concentration of vinyl chloride in samples. The research seeks to elucidate the complex relationship between industrial accidents, atmospheric chemistry, and their potential implications for human health and the environment. Through meticulous examination of variations in precipitation acidity patterns, this study provides valuable insights into the dispersion and impact of toxic agents in the environment following industrial mishaps. The results underscore the intricate interplay between these factors, highlighting the need for a multidisciplinary approach that bridges the realms of environmental science and biomedical concerns. This research contributes to a growing body of knowledge that addresses the broader consequences of industrial incidents on public health. It underscores the importance of proactive measures, such as enhanced monitoring and surveillance, risk assessment, public education, and regulatory reform, to mitigate the environmental and health risks associated with industrial activities involving hazardous materials. By fostering collaboration between experts and stakeholders, this study advocates for a holistic approach to safeguarding both our environment and the well-being of communities affected by industrial accidents.展开更多
This study presents a comprehensive physicochemical analysis of neem plant leaf extracts with a focus on their potential applications in pharmaceutical and biomedical contexts. Utilizing the soxhlet extraction method ...This study presents a comprehensive physicochemical analysis of neem plant leaf extracts with a focus on their potential applications in pharmaceutical and biomedical contexts. Utilizing the soxhlet extraction method with n-hexane as the solvent, the study investigated the quantitative and qualitative composition of neem leaf extracts in reference to concentrations. The results revealed a diverse array of compounds, including cyanogenic glycoside, cardiac glycoside, tannin, steroids, phytate, flavone, oxalate, rutin, lunamarin, catechin, spatein, naringin, resveratrol, kaempferol, flavonones, epicatechin, and epihedrine, with notable concentrations. Further analyses indicated shared physicochemical properties, such as carboxyl and hydroxyl groups. Qualitative assessments affirmed the presence of flavonoid and phenolic compounds, while FTIR analysis confirmed the existence of carboxyl and hydroxyl groups. These findings emphasize the potential use of neem leaves as pharmaceutical raw materials due to their antioxidant-rich content. Additionally, the study explored the density, viscosity, saponification value, and foaming power of neem leaf extracts, providing insights into their industrial applicability. GC-MS analyses highlighted the presence of significant chemical compounds, with potential therapeutic implications. Mineral analysis demonstrated essential elements for human and animal nutrition. This study underscores neem plant leaves’ multifaceted potential across pharmaceutical, herbal medicine, cosmetic, and functional food sectors. It lays a solid foundation for further research into the specific health benefits, offering valuable insights for harnessing neem leaves’ potential in innovative products and treatments.展开更多
文摘Al-Halabi is an intriguing ophthalmologist who invented numerous surgicalinstruments for treating various eye diseases. The illustrations of such instrumentsin his invaluable book “Kitab Al-Kafi fi Al-Kuhl” reflect his willingness toteach. Moreover, he included in his book a magnificent illustration of theanatomical structure of the eye. The book reflects Al-Halabi’s medical practice andteaching and shows several advanced medical techniques and tools. Hisinvaluable comments reflect his deep experimental observations in the field ofophthalmology. The current article provides proof that Al-Halabi is one of ourearly biomedical engineers from more than 800 years ago. Al-Halabi represents aring in the chain of biomedical engineering history. His surgical instrumentsrepresent the biomechanics field. Al-Halabi should be acknowledged among thebiomedical engineering students for his various contributions in the field ofsurgical instruments.
基金National Natural Science Foundation of China(Grant Nos.52175446,51975133,51975597)Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2021A1515011740,2019A1515011011)Shenzhen Fundamental Research Program(Grant No.JCYJ20170818163426597).
文摘Needles,as some of the most widely used medical devices,have been effectively applied in human disease prevention,diagnosis,treatment,and rehabilitation.Thin 1D needle can easily penetrate cells/organs by generating highly localized stress with their sharp tips to achieve bioliquid sampling,biosensing,drug delivery,surgery,and other such applications.In this review,we provide an overview of multiscale needle fabrication techniques and their biomedical applications.Needles are classified as nanoneedles,microneedles and millineedles based on the needle diameter,and their fabrication techniques are highlighted.Nanoneedles bridge the inside and outside of cells,achieving intracellular electrical recording,biochemical sensing,and drug delivery.Microneedles penetrate the stratum corneum layer to detect biomarkers/bioelectricity in interstitial fluid and deliver drugs through the skin into the human circulatory system.Millineedles,including puncture,syringe,acupuncture and suture needles,are presented.Finally,conclusions and future perspectives for next-generation nano/micro/milli needles are discussed.
文摘This paper expounds professional characteristics of biomedical engineering in our school, and analyses some problems lying in it, emphatically discusses advantages and the problems combining biomedical engineering with the medical courses in order to offer targeted solutions. It summarizes the results and problems so as to provide reference value to a new major.
基金the support from the University of South Carolina
文摘Helical hierarchy found in biomolecules like cellulose,chitin,and collagen underpins the remarkable mechanical strength and vibrant colors observed in living organisms.This study advances the integration of helical/chiral assembly and 3D printing technology,providing precise spatial control over chiral nano/microstructures of rod-shaped colloidal nanoparticles in intricate geometries.We designed reactive chiral inks based on cellulose nanocrystal(CNC)suspensions and acrylamide monomers,enabling the chiral assembly at nano/microscale,beyond the resolution seen in printed materials.We employed a range of complementary techniques including Orthogonal Superposition rheometry and in situ rheo-optic measurements under steady shear rate conditions.These techniques help us to understand the nature of the nonlinear flow behavior of the chiral inks,and directly probe the flow-induced microstructural dynamics and phase transitions at constant shear rates,as well as their post-flow relaxation.Furthermore,we analyzed the photo-curing process to identify key parameters affecting gelation kinetics and structural integrity of the printed object within the supporting bath.These insights into the interplay between the chiral inks self-assembly dynamics,3D printing flow kinematics and photopolymerization kinetics provide a roadmap to direct the out-of-equilibrium arrangement of CNC particles in the 3D printed filaments,ranging from uniform nematic to 3D concentric chiral structures with controlled pitch length,as well as random orientation of chiral domains.Our biomimetic approach can pave the way for the creation of materials with superior mechanical properties or programable photonic responses that arise from 3D nano/microstructure and can be translated into larger scale 3D printed designs.
基金supported by the Sichuan Science and Technology Program,No.2023YFS0164 (to JC)。
文摘Traumatic brain injury is a serious medical condition that can be attributed to falls, motor vehicle accidents, sports injuries and acts of violence, causing a series of neural injuries and neuropsychiatric symptoms. However, limited accessibility to the injury sites, complicated histological and anatomical structure, intricate cellular and extracellular milieu, lack of regenerative capacity in the native cells, vast variety of damage routes, and the insufficient time available for treatment have restricted the widespread application of several therapeutic methods in cases of central nervous system injury. Tissue engineering and regenerative medicine have emerged as innovative approaches in the field of nerve regeneration. By combining biomaterials, stem cells, and growth factors, these approaches have provided a platform for developing effective treatments for neural injuries, which can offer the potential to restore neural function, improve patient outcomes, and reduce the need for drugs and invasive surgical procedures. Biomaterials have shown advantages in promoting neural development, inhibiting glial scar formation, and providing a suitable biomimetic neural microenvironment, which makes their application promising in the field of neural regeneration. For instance, bioactive scaffolds loaded with stem cells can provide a biocompatible and biodegradable milieu. Furthermore, stem cells-derived exosomes combine the advantages of stem cells, avoid the risk of immune rejection, cooperate with biomaterials to enhance their biological functions, and exert stable functions, thereby inducing angiogenesis and neural regeneration in patients with traumatic brain injury and promoting the recovery of brain function. Unfortunately, biomaterials have shown positive effects in the laboratory, but when similar materials are used in clinical studies of human central nervous system regeneration, their efficacy is unsatisfactory. Here, we review the characteristics and properties of various bioactive materials, followed by the introduction of applications based on biochemistry and cell molecules, and discuss the emerging role of biomaterials in promoting neural regeneration. Further, we summarize the adaptive biomaterials infused with exosomes produced from stem cells and stem cells themselves for the treatment of traumatic brain injury. Finally, we present the main limitations of biomaterials for the treatment of traumatic brain injury and offer insights into their future potential.
基金supported by the National Key Research and Development Program of China(No.2022YFA1104600)the National Natural Science Foundation of China(NSFC)Program(Nos.32201183,31927801,32101105)the Science and Technology Program of Guangzhou(SL2022A04J00774).
文摘Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers,that are promising for tissue engineering and regenerative medicine.Microgels can also be aggregated into microporous scaffolds,promoting cell infiltration and proliferation for tissue repair.This review gives an overview of recent developments in the fabrication techniques and applications of microgels.A series of conventional and novel strategies including emulsification,microfluidic,lithography,electrospray,centrifugation,gas-shearing,three-dimensional bioprinting,etc.are discussed in depth.The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy.Additionally,we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering.Through stimulating innovative ideas,the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
基金Supported by the National Natural Science Foundation of China(No.12272246)the Key Research and Development Projects in Sichuan Province(No.2023YFS0075).
文摘Cellular biomechanical features contributed to the occurrence and development of various physiological andpathological phenomena. Micropillar arrays have emerged as an important tool for both the assessment andmanipulation of cellular biomechanical characteristics. This comprehensive review provides an in-depthunderstanding of the fabrication methodologies of micropillar arrays and their applications in deciphering and finetuning cellular biomechanical properties and the innovative experimental platforms including organ-on-a-chip andorganoids-on-a-chip. This review provides novel insights into the potential of micropillar technology, poised toupdate the landscape of stem cell research and tissue engineering.
文摘Inspired by the skin structure,an asymmetric wettability tri-layer nanofiber membrane(TNM)consisting of hydrophilic inner layer loaded with lidocaine hydrochloride(LID),hydrophobic middle layer with ciprofloxacin(CIP)and hydrophobic outer layer has been created.The hydrophobic outer layer endows the TNM with waterproof function and anti-adhesion from contaminants.The hydrophobic middle layer with CIP preserves long-term inhibition of bacteria growth and the hydrophilic inner layer with LID possesses optimal waterabsorbing capacity and air permeability.The TNM dramatically elevates the water contact angles from 10°(inner layer)to 120(outer layer),indicating an asymmetric wettability,which could directionally transport wound exudate within the materials and meanwhile maintain a comfortable and moist environment to promote wound healing.Furthermore,the sequential release of LID and CIP could relieve pain rapidly and achieve antibacterial effect in the long run,respectively.In addition,the TNM shows superior biocompatibility towards L929 cells.The in vivo results show the TNM could prevent infection,accelerate epithelial regeneration and significantly accelerate wound healing.This study indicates the developed TNM with asymmetrical wettability and synergetic drug release shows great potential as a wound dressing in clinical application.
基金National Natural Science Foundation of China,Grant/Award Number:22172063Young Taishan Scholars Program,Grant/Award Number:tsqn201812080+1 种基金China Scholarship Council(CSC),Grant/Award Number:202008130132Independent Cultivation Program of Innovation Team of Ji'nan City,Grant/Award Number:2021GXRC052。
文摘Electrocatalytic water splitting has been identified as a potential candidate for producing clean hydrogen energy with zero carbon emission.However,the sluggish kinetics of oxygen evolution reaction on the anode side of the watersplitting device significantly hinders its practical applications.Generally,the efficiency of oxygen evolution processes depends greatly on the availability of cost‐effective catalysts with high activity and selectivity.In recent years,extensive theoretical and experimental studies have demonstrated that cobalt(Co)‐based nanomaterials,especially low‐dimensional Co‐based nanomaterials with a huge specific surface area and abundant unsaturated active sites,have emerged as versatile electrocatalysts for oxygen evolution reactions,and thus,great progress has been made in the rational design and synthesis of Co‐based nanomaterials for electrocatalytic oxygen evolution reactions.Considering the remarkable progress in this area,in this timely review,we highlight the most recent developments in Co‐based nanomaterials relating to their dimensional control,defect regulation(conductivity),electronic structure regulation,and so forth.Furthermore,a brief conclusion about recent progress achieved in oxygen evolution on Co‐based nanomaterials,as well as an outlook on future research challenges,is given.
基金supported by the National Science Foundation under grant DMR#2320355supported by the Department of Energy,Office of Science,Basic Energy Sciences,under Award#DESC0022305(formulation engineering of energy materials via multiscale learning spirals)Computing resources were provided by the ARCH high-performance computing(HPC)facility,which is supported by National Science Foundation(NSF)grant number OAC 1920103。
文摘Magnesium alloys are emerging as promising alternatives to traditional orthopedic implant materials thanks to their biodegradability,biocompatibility,and impressive mechanical characteristics.However,their rapid in-vivo degradation presents challenges,notably in upholding mechanical integrity over time.This study investigates the impact of high-temperature thermal processing on the mechanical and degradation attributes of a lean Mg-Zn-Ca-Mn alloy,ZX10.Utilizing rapid,cost-efficient characterization methods like X-ray diffraction and optical microscopy,we swiftly examine microstructural changes post-thermal treatment.Employing Pearson correlation coefficient analysis,we unveil the relationship between microstructural properties and critical targets(properties):hardness and corrosion resistance.Additionally,leveraging the least absolute shrinkage and selection operator(LASSO),we pinpoint the dominant microstructural factors among closely correlated variables.Our findings underscore the significant role of grain size refinement in strengthening and the predominance of the ternary Ca_(2)Mg_(6)Zn_(3)phase in corrosion behavior.This suggests that achieving an optimal blend of strength and corrosion resistance is attainable through fine grains and reduced concentration of ternary phases.This thorough investigation furnishes valuable insights into the intricate interplay of processing,structure,and properties in magnesium alloys,thereby advancing the development of superior biodegradable implant materials.
文摘Calcium-based biocomposite materials have a pivotal role in the biomedical field with their diverse properties and applications in combating challenging medical problems. The study states the development and characterization of Calcium-based biocomposites: Hydroxyapatite (HAP), and PVA-Gelatin-HAP films. For the preparation of Calcium-based biocomposites, an unconventional source, the waste material calcite stone, was used as calcium raw material, and by the process of calcination, calcium oxide was synthesized. From calcium oxide, HAP was prepared by chemical precipitation method, which was later added in different proportions to PVA-Gelatin solution and finally dried to form biocomposite films. Then the different properties of PVA/Gelatin/HAP composite, for instance, chemical, mechanical, thermal, and swelling properties due to the incorporation of various proportions of HAP in PVA-Gelatin solution, were investigated. The characterization of the HAP was conducted by X-ray Diffraction Analysis, and the characterization of HAP-PVA-Gelatin composites was done by Fourier Transform Infrared Spectroscopy, Thermomechanical Analysis, Tensile test, Thermogravimetric Differential Thermal Analysis, and Swelling Test. The produced biocomposite films might have applications in orthopedic implants, drug delivery, bone tissue engineering, and wound healing.
基金This work was supported by City University of Hong Kong Strategic Research Grant(SRG)No.7005264,Guangdong-Hong Kong Technology Cooperation Funding Scheme(TCFS)No.GHP/085/18SZ(CityU 9440230)Hong Kong Research Grants Council General Research Funds(GRF)No.CityU 11205617.
文摘As an important phenomenon to monitor disease development,cell signaling usually takes place at the interface between organisms/cells or between organisms/cells and abiotic materials.Therefore,finding a strategy to build the specific biomedical interfaces will help regulate information transmission and produce better therapeutic results to benefit patients.In the past decades,plasmas containing energetic and active species have been employed to construct various interfaces to meet biomedical demands such as bacteria inactivation,tissue regeneration,cancer therapy,and so on.Based on the potent functions of plasma modified surfaces,this mini-review is aimed to summarize the state-of-art plasma-activated interfaces and provide guidance to researchers to select the proper plasma and processing conditions to design and prepare interfaces with the optimal biological and related functions.After a brief introduction,plasma-activated interfaces are described and categorized according to different criteria including direct plasma-cells interfaces and indirect plasma-material-cells interfaces and recent research activities on the application of plasma-activated interfaces are described.The authors hope that this mini-review will spur interdisciplinary research efforts in this important area and expedite associated clinical applications.
基金supported by The Plastic Surgery Foundation Research Pilot Grant,No.627383(to KAS).
文摘Peripheral nerve injuries remain a challenging problem in need of better treatment strategies.Despite best efforts at surgical reconstruction and postoperative rehabilitation,patients are often left with persistent,debilitating motor and sensory deficits.There are currently no therapeutic strategies proven to enhance the regenerative process in humans.A clinical need exists for the development of technologies to promote nerve regeneration and improve functional outcomes.Recent advances in the fields of tissue engineering and nanotechnology have enabled biomaterial scaffolds to modulate the host response to tissue repair through tailored mechanical,chemical,and conductive cues.New bioengineered approaches have enabled targeted,sustained delivery of protein therapeutics with the capacity to unlock the clinical potential of a myriad of neurotrophic growth factors that have demonstrated promise in enhancing regenerative outcomes.As such,further exploration of combinatory strategies leveraging these technological advances may offer a pathway towards clinically translatable solutions to advance the care of patients with peripheral nerve injuries.This review first presents the various emerging bioengineering strategies that can be applied for the management of nerve gap injuries.We cover the rationale and limitations for their use as an alternative to autografts,focusing on the approaches to increase the number of regenerating axons crossing the repair site,and facilitating their growth towards the distal stump.We also discuss the emerging growth factor-based therapeutic strategies designed to improve functional outcomes in a multimodal fashion,by accelerating axonal growth,improving the distal regenerative environment,and preventing end-organs atrophy.
基金This work was funded by NIH grants R01EB020062(M.I.M.),R01NS102670(M.I.M.)U19AG033655.
文摘If the 20th century was the age of mapping and controlling the external world,the 21st century is the biomedical age of mapping and controlling the biological internal world.The biomedical age is bringing new technological breakthroughs for sensing and controlling human biomolecules,cells,tissues,and organs,which underpin new frontiers in the biomedical discovery,data,biomanufacturing,and translational sciences.This article reviews what we believe will be the next wave of biomedical engineering(BME)education in support of the biomedical age,what we have termed BME 2.0.BME 2.0 was announced on October 122017 at BMES 49(https://www.bme.jhu.edu/news-events/news/miller-opens-2017-bmes-annual-meeting-with-vision-for-new-bme-era/).We present several principles upon which we believe the BME 2.0 curriculum should be constructed,and from these principles,we describe what view as the foundations that form the next generations of curricula in support of the BME enterprise.The core principles of BME 2.0 education are(a)educate students bilingually,from day 1,in the languages of modern molecular biology and the analytical modeling of complex biological systems;(b)prepare every student to be a biomedical data scientist;(c)build a unique BME community for discovery and innovation via a vertically integrated and convergent learning environment spanning the university and hospital systems;(d)champion an educational culture of inclusive excellence;and(e)codify in the curriculum ongoing discoveries at the frontiers of the discipline,thus ensuring BME 2.0 as a launchpad for training the future leaders of the biotechnology marketplaces.We envision that the BME 2.0 education is the path for providing every student with the training to lead in this new era of engineering the future of medicine in the 21st century.
基金This work was financially supported by the National Natural Science Foundation of China(no.51671179,51971014)the Excellent teacher ability improvement project(E1E40308).
文摘Biomedical magnesium is an ideal material for hard tissue repair and replacement.However,its rapid degradation and infection after implantation significantly hindersclinical applications.To overcome these two critical drawbacks,we describe an integrated strategybased on the changes in pH and Mg^(2+)triggered by magnesiumdegradation.This system can simultaneously offer anticorrosion and antibacterial activity.First,nanoengineered peptide-grafted hyperbranched polymers(NPGHPs)with excellent antibacterial activity were introduced to sodium alginate(SA)to construct a sensitive NPGHPs/SA hydrogel.The swelling degree,responsiveness,and antibacterial activity were then investigated,indicating that the system can perform dual stimulation of pH and Mg^(2+)with controllable antimicrobial properties.Furthermore,an intelligent platform was constructed by coating hydrogels on magnesium with polydopamine as the transition layer.The alkaline environment generated by the corrosion of magnesium reduces the swelling degree of the coatingso that the liquid is unfavorable for contacting the substrate,thus exhibiting superior corrosion resistance.Antibacterial testing shows that the material can effectively fight against bacteria,while hemolytic and cytotoxicity testing suggest that it is highly biocompatible.Thus,this work realizes the smart integration of anticorrosion and antibacterial properties of biomedical magnesium,thereby providing broader prospects for the use of magnesium.
文摘In the article“BME 2.0:Engineering the Future of Medicine”[1],the competing interests statement was inadvertently omitted by the publisher from the published version of the article.This has now been corrected in the PDF and HTML(full text).
文摘The field of biomedical imaging has been revolutionized by deep learning techniques.This special issue is focused on the theme of“AI-based Image Analysis”.Because there are so many conferences and journals in this field,our special issue can only be a small snapshot of a much bigger and highly dynamic picture.In this special issue,we present six papers that highlight the power of deep learning in solving challenging biomedical imaging and image analysis problems.
文摘This study investigates the aftermath of a significant train derailment and vinyl chloride release incident in East Palestine, Ohio, with a particular focus on the analysis of precipitation acidity changes and the concentration of vinyl chloride in samples. The research seeks to elucidate the complex relationship between industrial accidents, atmospheric chemistry, and their potential implications for human health and the environment. Through meticulous examination of variations in precipitation acidity patterns, this study provides valuable insights into the dispersion and impact of toxic agents in the environment following industrial mishaps. The results underscore the intricate interplay between these factors, highlighting the need for a multidisciplinary approach that bridges the realms of environmental science and biomedical concerns. This research contributes to a growing body of knowledge that addresses the broader consequences of industrial incidents on public health. It underscores the importance of proactive measures, such as enhanced monitoring and surveillance, risk assessment, public education, and regulatory reform, to mitigate the environmental and health risks associated with industrial activities involving hazardous materials. By fostering collaboration between experts and stakeholders, this study advocates for a holistic approach to safeguarding both our environment and the well-being of communities affected by industrial accidents.
文摘This study presents a comprehensive physicochemical analysis of neem plant leaf extracts with a focus on their potential applications in pharmaceutical and biomedical contexts. Utilizing the soxhlet extraction method with n-hexane as the solvent, the study investigated the quantitative and qualitative composition of neem leaf extracts in reference to concentrations. The results revealed a diverse array of compounds, including cyanogenic glycoside, cardiac glycoside, tannin, steroids, phytate, flavone, oxalate, rutin, lunamarin, catechin, spatein, naringin, resveratrol, kaempferol, flavonones, epicatechin, and epihedrine, with notable concentrations. Further analyses indicated shared physicochemical properties, such as carboxyl and hydroxyl groups. Qualitative assessments affirmed the presence of flavonoid and phenolic compounds, while FTIR analysis confirmed the existence of carboxyl and hydroxyl groups. These findings emphasize the potential use of neem leaves as pharmaceutical raw materials due to their antioxidant-rich content. Additionally, the study explored the density, viscosity, saponification value, and foaming power of neem leaf extracts, providing insights into their industrial applicability. GC-MS analyses highlighted the presence of significant chemical compounds, with potential therapeutic implications. Mineral analysis demonstrated essential elements for human and animal nutrition. This study underscores neem plant leaves’ multifaceted potential across pharmaceutical, herbal medicine, cosmetic, and functional food sectors. It lays a solid foundation for further research into the specific health benefits, offering valuable insights for harnessing neem leaves’ potential in innovative products and treatments.