期刊文献+
共找到638篇文章
< 1 2 32 >
每页显示 20 50 100
Oxygen‑Coordinated Single Mn Sites for Efficient Electrocatalytic Nitrate Reduction to Ammonia
1
作者 Shengbo Zhang Yuankang Zha +8 位作者 Yixing Ye Ke Li Yue Lin Lirong Zheng Guozhong Wang Yunxia Zhang Huajie Yin Tongfei Shi Haimin Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期147-159,共13页
Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites... Electrocatalytic nitrate reduction reaction has attracted increasing attention due to its goal of low carbon emission and environmental protection.Here,we report an efficient NitRR catalyst composed of single Mn sites with atomically dispersed oxygen(O)coordination on bacterial cellulose-converted graphitic carbon(Mn-O-C).Evidence of the atomically dispersed Mn-(O-C_(2))_(4)moieties embedding in the exposed basal plane of carbon surface is confirmed by X-ray absorption spectroscopy.As a result,the as-synthesized Mn-O-C catalyst exhibits superior NitRR activity with an NH_(3)yield rate(RNH_(3))of 1476.9±62.6μg h^(−1)cm^(−2)at−0.7 V(vs.reversible hydrogen electrode,RHE)and a faradaic efficiency(FE)of 89.0±3.8%at−0.5 V(vs.RHE)under ambient conditions.Further,when evaluated with a practical flow cell,Mn-O-C shows a high RNH_(3)of 3706.7±552.0μg h^(−1)cm^(−2)at a current density of 100 mA cm−2,2.5 times of that in the H cell.The in situ FT-IR and Raman spectroscopic studies combined with theoretical calculations indicate that the Mn-(O-C_(2))_(4)sites not only effectively inhibit the competitive hydrogen evolution reaction,but also greatly promote the adsorption and activation of nitrate(NO_(3)^(−)),thus boosting both the FE and selectivity of NH_(3)over Mn-(O-C_(2))_(4)sites. 展开更多
关键词 Atomically dispersed Oxygen coordination Nitrate reduction reaction In situ spectroscopic studies Hydrogen evolution reaction
下载PDF
Progress on the mechanisms of Ru-based electrocatalysts for the oxygen evolution reaction in acidic media
2
作者 Yuanyuan Shi Han Wu +2 位作者 Jiangwei Chang Zhiyong Tang Siyu Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期220-238,I0008,共20页
Water electrolysis using proton-exchange membranes is one of the most promising technologies for carbon-neutral and sustainable energy production.Generally,the overall efficiency of water splitting is limited by the o... Water electrolysis using proton-exchange membranes is one of the most promising technologies for carbon-neutral and sustainable energy production.Generally,the overall efficiency of water splitting is limited by the oxygen evolution reaction(OER).Nevertheless,a trade-off between activity and stability exists for most electrocatalytic materials in strong acids and oxidizing media,and the development of efficient and stable catalytic materials has been an important focus of research.In this view,gaining in-depth insights into the OER system,particularly the interactions between reaction intermediates and active sites,is significantly important.To this end,this review introduces the fundamentals of the OER over Ru-based materials,including the conventional adsorbate evolution mechanism,lattice oxygen oxidation mechanism,and oxide path mechanism.Moreover,the up-to-date progress of representative modifications for improving OER performance is further discussed with reference to specific mechanisms,such as tuning of geometric,electronic structures,incorporation of proton acceptors,and optimization of metal-oxygen covalency.Finally,some valuable insights into the challenges and opportunities for OER electrocatalysts are provided with the aim to promote the development of next-generation catalysts with high activity and excellent stability. 展开更多
关键词 Oxygen evolution reaction Ru-based electrocatalysts Acidic solutions Mechanism Proton-exchange membranes
下载PDF
Photoelectrocatalytic principles for meaningfully studying photocatalyst properties and photocatalysis processes:From fundamental theory to environmental applications
3
作者 Jiafang Liu Shengbo Zhang +1 位作者 Weikang Wang Haimin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期84-117,I0003,共35页
Photocatalysis is critically important for environmental remediation and renewable energy technologies.The ability to objectively characterize photocatalyst properties and photocatalysis processes is paramount for mea... Photocatalysis is critically important for environmental remediation and renewable energy technologies.The ability to objectively characterize photocatalyst properties and photocatalysis processes is paramount for meaningful performance evaluation and fundamental studies to guide the design and development of high-performance photocatalysts and photocatalysis systems.Photocatalysis is essentially an electron transfer process,and photoelectrocatalysis(PEC)principles can be used to directly quantify transferred electrons to determine the intrinsic properties of photocatalysts and photocatalysis processes in isolation,without interference from counter reactions due to physically separated oxidation and reduction half-reactions.In this review,we discuss emphatically the PEC-based principles for characterizing intrinsic properties of photocatalysts and important processes of photocatalysis,with a particular focus on their environmental applications in the degradation of pollutants,disinfection,and detection of chemical oxygen demand(COD).An outlook towards the potential applications of PEC technique is given. 展开更多
关键词 PHOTOELECTROCATALYSIS Photocatalytic intrinsic properties Photocatalytic characterization Environmental remediation Photoelectrocatalysis-based application
下载PDF
Synergistic interphase modification with dual electrolyte additives to boost cycle stability of high nickel cathode for all-climate battery
4
作者 Zhangyating Xie Jiarong He +9 位作者 Zhiyong Xia Qinqin Cai Ziyuan Tang Jie Cai Yili Chen Xiaoqing Li Yingzhu Fan Lidan Xing Yanbin Shen Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期197-207,I0005,共12页
B-containing electrolyte additives are widely used to enhance the cycle performance at low temperature and the rate capability of lithium-ion batteries by constructing an efficient cathode electrolyte interphase(CEI)t... B-containing electrolyte additives are widely used to enhance the cycle performance at low temperature and the rate capability of lithium-ion batteries by constructing an efficient cathode electrolyte interphase(CEI)to facilitate the rapid Li+migration.Nevertheless,its wide-temperature application has been limited by the instability of B-derived CEI layer at high temperature.Herein,dual electrolyte additives,consisting of lithium tetraborate(Li_(2)TB)and 2,4-difluorobiphenyl(FBP),are proposed to boost the widetemperature performances of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM)cathode.Theoretical calculation and electrochemical performances analyses indicate that Li_(2)TB and FBP undergo successive decomposition to form a unique dual-layer CEI.FBP acts as a synergistic filming additive to Li_(2)TB,enhancing the hightemperature performance of NCM cathode while preserving the excellent low-temperature cycle stability and the superior rate capability conferred by Li_(2)TB additive.Therefore,the capacity retention of NCM‖Li cells using optimal FBP-Li_(2)TB dual electrolyte additives increases to 100%after 200 cycles at-10℃,99%after 200 cycles at 25℃,and 83%after 100 cycles at 55℃,respectively,much superior to that of base electrolyte(63%/69%/45%).More surprisingly,galvanostatic c ha rge/discharge experiments at different temperatures reveal that NCM‖Li cells using FBP-Li_(2)TB additives can operate at temperatures ranging from-40℃to 60℃.This synergistic interphase modification utilizing dual electrolyte additives to construct a unique dual-layer CEI adaptive to a wide temperature range,provides valuable insights to the practical applications of NCM cathodes for all-climate batteries. 展开更多
关键词 Nickel-rich cathode Dual electrolyte additives Lithium-ion batteries Wide temperature application Cathode electrolyte interphase
下载PDF
Quantitative measurement of the charge carrier concentration using dielectric force microscopy
5
作者 赖君奇 陈博文 +4 位作者 邢志伟 李雪飞 陆书龙 陈琪 陈立桅 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期449-455,共7页
The charge carrier concentration profile is a critical factor that determines semiconducting material properties and device performance.Dielectric force microscopy(DFM)has been previously developed to map charge carri... The charge carrier concentration profile is a critical factor that determines semiconducting material properties and device performance.Dielectric force microscopy(DFM)has been previously developed to map charge carrier concentrations with nanometer-scale spatial resolution.However,it is challenging to quantitatively obtain the charge carrier concentration,since the dielectric force is also affected by the mobility.Here,we quantitative measured the charge carrier concentration at the saturation mobility regime via the rectification effect-dependent gating ratio of DFM.By measuring a series of n-type GaAs and GaN thin films with mobility in the saturation regime,we confirmed the decreased DFM-measured gating ratio with increasing electron concentration.Combined with numerical simulation to calibrate the tip–sample geometry-induced systematic error,the quantitative correlation between the DFM-measured gating ratio and the electron concentration has been established,where the extracted electron concentration presents high accuracy in the range of 4×10^(16)–1×10^(18)cm^(-3).We expect the quantitative DFM to find broad applications in characterizing the charge carrier transport properties of various semiconducting materials and devices. 展开更多
关键词 dielectric force microscopy charge carrier concentration quantitative measurement numerical simulation
原文传递
Progress in oncolytic viruses modified with nanomaterials for intravenous application
6
作者 Liting Chen Zhijun Ma +5 位作者 Chen Xu Youbang Xie Defang Ouyang Shuhui Song Xiao Zhao Funan Liu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2023年第11期830-855,共26页
In oncolytic virus(OV)therapy,a critical component of tumor immunotherapy,viruses selectively infect,replicate within,and eventually destroy tumor cells.Simultaneously,this therapy activates immune responses and mobil... In oncolytic virus(OV)therapy,a critical component of tumor immunotherapy,viruses selectively infect,replicate within,and eventually destroy tumor cells.Simultaneously,this therapy activates immune responses and mobilizes immune cells,thereby eliminating residual or distant cancer cells.However,because of OVs’high immunogenicity and immune clearance during circulation,their clinical applications are currently limited to intratumoral injections,and their use is severely restricted.In recent years,numerous studies have used nanomaterials to modify OVs to decrease virulence and increase safety for intravenous injection.The most commonly used nanomaterials for modifying OVs are liposomes,polymers,and albumin,because of their biosafety,practicability,and effectiveness.The aim of this review is to summarize progress in the use of these nanomaterials in preclinical experiments to modify OVs and to discuss the challenges encountered from basic research to clinical application. 展开更多
关键词 Oncolytic virus NANOMATERIALS drug delivery tumor treatment intravenous application
下载PDF
Non-invasive assessment for intratumoural distribution of interstitial fluid flow
7
作者 Jun Zhao Yupeng Cao +1 位作者 Wentao Liu Dong Han 《Magnetic Resonance Letters》 2023年第4期286-297,共12页
Interstitial fluid plays a vital role in drug delivery and tumour treatment.However,few non-invasive measurement methods are available for measuring low-velocity biological fluid flow.Therefore,this study aimed to dev... Interstitial fluid plays a vital role in drug delivery and tumour treatment.However,few non-invasive measurement methods are available for measuring low-velocity biological fluid flow.Therefore,this study aimed to develop a novel technology called interstitial flow velocity-MRI.The interstitial flow velocity-MRI sequence consists of a dual inversion recovery preparation and an improved stimulated echo sequence(ISTE)combined with phase-contrast MRI.A homemade flow phantom was used to assess the feasibility and sensitivity of interstitial flow velocity-MRI.In addition,xenografts of female BALB/c mouse models of 4T1 breast cancer administered losartan(40 mg/kg)or saline(n?6)were subjected to imaging on a 7.0 T scanner to assess the in vivo interstitial fluid flow velocity.The results showed a significant correlation(P<0.001)between the theoretical velocities and velocities measured using the flow phantom.Interstitial flow velocity-MRI could detect a velocity as low as 10.21±2.65 mm/s with a spatial resolution of 0.313 mm.The losartan group had a lower mean interstitial fluid velocity than the control group(85±16 vs 113±24 mm/s).In addition,compared to the saline treatment,losartan treatment reduced the proportion of collagen fibres by 10%and 12%in the Masson and Sirius red staining groups,respectively.Interstitial flow velocity-MRI has the potential to determine interstitial fluid flow velocity non-invasively and exhibits an intuitive velocity map. 展开更多
关键词 Interstitial fluid flow Interstitial flow velocity-MRI LOSARTAN Slow flows Tumour microenvironment
下载PDF
A Review of Contact Electrification at Diversified Interfaces and Related Applications on Triboelectric Nanogenerator
8
作者 Jun Hu Mitsumasa Iwamoto Xiangyu Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期106-130,共25页
The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables... The triboelectric nanogenerator(TENG)can effectively collect energy based on contact electrification(CE)at diverse interfaces,including solid–solid,liquid–solid,liquid–liquid,gas–solid,and gas–liquid.This enables energy harvesting from sources such as water,wind,and sound.In this review,we provide an overview of the coexistence of electron and ion transfer in the CE process.We elucidate the diverse dominant mechanisms observed at different interfaces and emphasize the interconnectedness and complementary nature of interface studies.The review also offers a comprehensive summary of the factors influencing charge transfer and the advancements in interfacial modification techniques.Additionally,we highlight the wide range of applications stemming from the distinctive characteristics of charge transfer at various interfaces.Finally,this review elucidates the future opportunities and challenges that interface CE may encounter.We anticipate that this review can offer valuable insights for future research on interface CE and facilitate the continued development and industrialization of TENG. 展开更多
关键词 Contact electrification INTERFACES Triboelectric nanogenerators Diversified applications
下载PDF
Intelligent Recognition Using Ultralight Multifunctional Nano‑Layered Carbon Aerogel Sensors with Human‑Like Tactile Perception
9
作者 Huiqi Zhao Yizheng Zhang +8 位作者 Lei Han Weiqi Qian Jiabin Wang Heting Wu Jingchen Li Yuan Dai Zhengyou Zhang Chris RBowen Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期172-186,共15页
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq... Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence. 展开更多
关键词 Multifunctional sensor Tactile perception Multimodal machine learning algorithms Universal tactile system Intelligent object recognition
下载PDF
Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified LSM-YSZ anode 被引量:4
10
作者 Yuefeng Song Xiaomin Zhang +5 位作者 Yingjie Zhou Houfu Lv Qingxue Liu Weicheng Feng Guoxiong Wang Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第8期181-187,I0007,共8页
Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto con... Gold, as the common current collector in solid oxide electrolysis cell(SOEC), is traditionally considered to be inert for oxygen evolution reaction at the anode of SOEC. Herein, gold nanoparticles were loaded onto conventional strontium doped lanthanum manganite-yttria stabilized zirconia(LSM-YSZ) anode, which evidently improved the performance of oxygen evolution reaction at 800 °C. The current densities at 1.2 V and 1.4 V increased by 60.0% and 46.9%, respectively, after loading gold nanoparticles onto the LSM-YSZ anode. Physicochemical characterizations and electrochemical measurements suggested that the improved SOEC performance was attributed to the accelerated electron transfer of elementary process in anodic polarization reaction and the newly generated triple phase boundaries in gold nanoparticles-loaded LSMYSZ anode. 展开更多
关键词 Solid oxide ELECTROLYSIS cell Oxygen evolution reaction Gold nanoparticles CO2 ELECTROLYSIS STRONTIUM doped lanthanum manganite-yttria stabilized ZIRCONIA
下载PDF
Research progress of low-dimensional metal halide perovskites for lasing applications 被引量:4
11
作者 刘镇 李淳 +10 位作者 尚秋宇 赵丽云 钟阳光 高燕 杜文娜 米阳 陈杰 张帅 刘新风 付英双 张青 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期147-157,共11页
Metal halide perovskites have been regarded as remarkable materials for next-generation light-harvesting and light emission devices. Due to their unique optical properties, such as high absorption coefficient, high op... Metal halide perovskites have been regarded as remarkable materials for next-generation light-harvesting and light emission devices. Due to their unique optical properties, such as high absorption coefficient, high optical gain, low trappingstate density, and ease of band gap engineering, perovskites promise to be used in lasing devices. In this article, the recent progresses of microlasers based on reduced-dimensional structures including nanoplatelets, nanowires, and quantum dots are reviewed from both fundamental photophysics and device applications. Furthermore, perovskite-based plasmonic nanolasers and polariton lasers are summarized. Perspectives on perovskite-based small lasers are also discussed. This review can serve as an overview and evaluation of state-of-the-art micro/nanolaser science. 展开更多
关键词 PEROVSKITE NANOSTRUCTURE laser MICROLASER EMISSION
原文传递
Nitrogen-doped carbon nanotube encapsulating cobalt nanoparticles towards efficient oxygen reduction for zinc–air battery 被引量:3
12
作者 Haihua Wu Xiaole Jiang +5 位作者 Yifan Ye Chengcheng Yan Songhai Xie Shu Miao Guoxiong Wang Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1181-1186,共6页
Nitrogen-doped carbon materials encapsulating 3 d transition metals are promising alternatives to replace noble metal Pt catalysts for efficiently catalyzing the oxygen reduction reaction(ORR). Herein, we use cobalt s... Nitrogen-doped carbon materials encapsulating 3 d transition metals are promising alternatives to replace noble metal Pt catalysts for efficiently catalyzing the oxygen reduction reaction(ORR). Herein, we use cobalt substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer and dicyandiamide as the pyrolysis precursor to synthesize nitrogen-doped carbon nanotube(N–CNT) encapsulating cobalt nanoparticles hybrid material. The carbon layers and specific surface area of N–CNT have a critical role to the ORR performance due to the exposed active sites, determined by the mass ratio of the two precursors. The optimum hybrid material exhibits high ORR activity and stability, as well as excellent performance and durability in zinc–air battery. 展开更多
关键词 Nitrogen-doped carbon nanotube Perfluorosulfonic Acid/polytetrafluoroethylene copolymer Cobalt substitution Oxygen reduction reaction Zinc–air battery
下载PDF
Combining chlorination and sulfuration strategies for high-performance all-small-molecule organic solar cells 被引量:3
13
作者 Ruimin Zhou Chen Yang +8 位作者 Wenjun Zou Muhammad Abdullah Adil Huan Li Min Lv Ziyun Huang Menglan Lv Jianqi Zhang Kun Lu Zhixiang Wei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期228-233,I0008,共7页
Three small-molecule donors based on dithieno [2,3-d:2’,3 ’-d’]-benzo[1,2-b:4,5-b’] dithiophene(DTBDT)unit were designed and synthesized by side chain regulation with chlorinated or/and sulfurated substitutions(na... Three small-molecule donors based on dithieno [2,3-d:2’,3 ’-d’]-benzo[1,2-b:4,5-b’] dithiophene(DTBDT)unit were designed and synthesized by side chain regulation with chlorinated or/and sulfurated substitutions(namely ZR1,ZR1-Cl,and ZR1-S-Cl respectively),along with a crystalline non-fullerene acceptor IDIC-4 Cl with a chlorinated 1,1-dicyanomethylene-3-indanone(IC) end group.Energy levels,molar extinction coefficients and crystallinities of three donor molecules can be effectively altered by combining chlorination and sulfuration strategies.Especially,the ZR1-S-Cl exhibited the best absorption ability,lowest higher occupied molecular orbital(HOMO) energy level and highest crystallinity among three donors,resulting in the corresponding all-small-molecule organic solar cells to produce a high power conversion efficiency(PCE) of 12.05% with IDIC-4 Cl as an acceptor. 展开更多
关键词 All-small-molecule Chlorination and sulfuration Fibrous morphology CRYSTALLINITY
下载PDF
Enhanced Roles of Carbon Architectures in High-Performance Lithium-Ion Batteries 被引量:2
14
作者 Lu Wang Junwei Han +2 位作者 Debin Kong Ying Tao QuanHong Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期78-100,共23页
Lithium?ion batteries(LIBs), which are high?energy?density and low?safety?risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global e... Lithium?ion batteries(LIBs), which are high?energy?density and low?safety?risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achiev?ing high energy density and fast?charging performance, the exploitation of simple and low?cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion?accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high?performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemi?cal reaction frameworks for high?capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engi?neering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee su cient charge delivery and volume fluctuation bu ering inside the electrode during cycling. Some specific feasible assem?bly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high?capacity carbon?caged noncarbon anodes with volumetric capacities over 2100 mAh cm^(-3). Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities(both gravimetric and volumetric) and high rate performance. 展开更多
关键词 Lithium-ion battery Carbon architecture Energy density Power density Assembly
下载PDF
Synthesis of Cu/ZnO Flower-like Hierarchical Porous Structures and Investigation of Their Catalytic Performance for Dimethyl Oxalate Hydrogenation 被引量:2
15
作者 San Xiaoguang Zhao Guodong +3 位作者 Wang Guosheng Qi Jian Jin Quan Meng Dan 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第2期40-47,共8页
The Cu/ZnO flower-like hierarchical porous structures were successfully synthesized via the cetyltrimethyl ammonium bromide(CTAB) assisted hydrothermal method. The morphology and structure as well as the catalytic per... The Cu/ZnO flower-like hierarchical porous structures were successfully synthesized via the cetyltrimethyl ammonium bromide(CTAB) assisted hydrothermal method. The morphology and structure as well as the catalytic performance for dimethyl oxalate(DMO) hydrogenation to ethylene glycol(EG) were investigated. Through annealing the zinc copper hydroxide carbonate(ZCHC) precursors, the Cu/ZnO flower-like hierarchical porous structures were obtained, which were assembled by a number of porous nanosheets. The catalyst made of these well-defined flower-like hierarchical porous structures with large specific surface area and effective gas diffusion path via the well-aligned porous structures showed higher EG selectivity and yield as compared to the Cu/ZnO catalyst obtained by conventional co-precipitation technique. The results indicated that the Cu/ZnO flower-like hierarchical porous structures have excellent potential application for manufacture of high performance catalysts. 展开更多
关键词 HIERARCHICAL porous structure Cu/ZnO catalyst dimethyl OXALATE HYDROGENATION
下载PDF
Laser-Etched Stretchable Graphene-Polymer Composite Array for Sensitive Strain and Viscosity Sensors 被引量:2
16
作者 Yuting Jiang Yang Wang +4 位作者 Heting Wu Yuanhao Wang Renyun Zhang H?kan Olin Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期709-719,共11页
The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications.Soft materials have prominent advantages for producing the smart coatings with multiple fu... The ability to control surface wettability and liquid spreading on textured surfaces is of interest for extensive applications.Soft materials have prominent advantages for producing the smart coatings with multiple functions for strain sensing.Here,we report a simple method to prepare flexible hydrophobic smart coatings using graphene-polymer films.Arrays of individual patterns in the films were created by laser engraving and controlled the contact angle of small drops by pinning the contact lines in a horizontal tensile range of 0-200%.By means of experiments and model,we demonstrate that the ductility of drops is relied on the height-to-spacing ratio of the individual pattern and the intrinsic contact angle.Moreover,the change of drop size was utilized to measure the applied strain and liquid viscosity,enabling a strain sensitivity as high as 1068μm2/%.The proposed laser-etched stretchable graphene-polymer composite has potential applications in DNA microarrays,biological assays,soft robots,and so on. 展开更多
关键词 HYDROPHOBIC smart coatings Flexible sensors Soft materials Controlled DROPS GRAPHENE
下载PDF
Advances in biodegradable nanomaterials for photothermal therapy of cancer 被引量:2
17
作者 Chao-Feng He Shun-Hao Wang +6 位作者 Ying-Jie Yu He-Yun Shen Yan Zhao Hui-Ling Gao Hai Wang Lin-Lin Li Hui-Yu Liu 《Cancer Biology & Medicine》 SCIE CAS CSCD 2016年第3期299-312,共14页
Photothermal cancer therapy is an alternative to chemotherapy, radiotherapy, and surgery. With the development of nanophotothermal agents, this therapy holds immense potential in clinical translation. However, the tox... Photothermal cancer therapy is an alternative to chemotherapy, radiotherapy, and surgery. With the development of nanophotothermal agents, this therapy holds immense potential in clinical translation. However, the toxicity issues derived from the fact that nanomaterials are trapped and retained in the reticuloendothelial systems limit their biomedical application.Developing biodegradable photothermal agents is the most practical route to address these concerns. In addition to the physicochemical properties of nanomaterials, various internal and external stimuli play key roles on nanomaterials uptake,transport, and clearance. In this review, we summarized novel nanoplatforms for photothermal therapy; these nanoplatforms can elicit stimuli-triggered degradation. We focused on the recent innovative designs endowed with biodegradable photothermal agents under different stimuli, including enzyme, p H, and near-infrared(NIR) laser. 展开更多
关键词 Photothermal therapy enzyme stimuli p H stimuli near-infrared laser stimuli BIODEGRADABILITY
下载PDF
High-performance supercapacitors based on free-standing SiC@PEDOT nanowires with robust cycling stability 被引量:1
18
作者 Wenna Liu Xiaoxiao Li +5 位作者 Weijun Li Yumin Ye Hong Wang Peipei Su Weiyou Yang Ya Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期30-37,I0002,共9页
Conductive polymers as one of the candidate materials with pseudocapacitor behavior have inspired wide attentions,because of their high conductivity,fexibility,low cost and excellent processability.However,the intrins... Conductive polymers as one of the candidate materials with pseudocapacitor behavior have inspired wide attentions,because of their high conductivity,fexibility,low cost and excellent processability.However,the intrinsically poor cycling stability induced by the volume change over the doping/dedoping redox process limits their practical applications.Herein,we report the exploration of electrodes with robust cycling capacity for supercapacitors(SCs),which are rationally designed by coating conductive poly(3,4-ethylenedioxythiophene)(PEDOT)around free-standing SiC nanowires using an all-dry oxidative chemical vaper deposition(oCVD)method.The as-constructed SiC@PEDOT nanowire architecture enables a specific capacitance of 26.53 m F/cm^(2)at 0.2 m A/cm^(2),which is~370%to that of SiC nanowire counterpart(7.04 m F/cm^(2)).Moreover,their aqueous-based SCs exhibit robust cycling stability with104%capacity retention after 10000 cycles,which is among the highest values achieved for PEDOTbased SCs. 展开更多
关键词 PEDOT SiC nanowires SUPERCAPACITOR Energy storage Cycling stability
下载PDF
Optimizing polymer aggregation and blend morphology for boosting the photovoltaic performance of polymer solar cells via a random terpolymerization strategy 被引量:1
19
作者 Tao Zhang Cunbin An +8 位作者 Qianglong Lv Jinzhao Qin Yong Cui Zhong Zheng Bowei Xu Shaoqing Zhang Jianqi Zhang Chang He Jianhui Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期30-37,I0002,共9页
Compared to regular conjugated polymers,the random conjugated terpolymers are usually not beneficial to achieve highly efficient non-fullerene(NF)-based polymer solar cells(PSCs)due to their disordered chemical struct... Compared to regular conjugated polymers,the random conjugated terpolymers are usually not beneficial to achieve highly efficient non-fullerene(NF)-based polymer solar cells(PSCs)due to their disordered chemical structures.In this work,we report two random terpolymer donors(PBNB80 and PBNB50)by tuning the molar ratio of electron-accepting units of 1,3-di(thiophen-2-yl)naphtho[2,3-c]thiophene-4,9-dione(NTD)and 1,3-bis(4-chlorothiophen-2-yl)-4 H,8 H-benzo[1,2-c:4,5-c’]dithiophene-4,8-dione(ClBDD),at the same time,the parent polymers(PBNB100 and PBNB00)are also compared to study.These four polymer donors exhibit similar optical bandgaps and gradually deepen highest occupied molecular orbital levels.Importantly,aggregation and self-organization properties of the random terpolymer donors are optimized,which result in the better morphology and crystal coherence length after blending with NF acceptor of BO-4 Cl.Particularly,a PBNB80:BO-4 Cl blend forms an optimal nanoscale phase-separation morphology,thereby producing an outstanding power conversion efficiency of 16.0%,which is much higher than those(12.8%and 10.7%)of their parent binary polymer donor-based devices.This work demonstrates that rational using terpolymerization strategy to prepare random terpolymer is a very important method to achieve highly efficient NF-PSCs. 展开更多
关键词 Polymer solar cells Random terpolymer Non-fullerene acceptor Naphtho[2 3-c]thiophene-4 9-dione Morphology
下载PDF
Gradually modulating the three parts of D-π-A type polymers for high-performance organic solar cells 被引量:1
20
作者 Jialing Zhou Peiqing Cong +4 位作者 Lie Chen Bao Zhanga Yanfang Geng Ailing Tang Erjun Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期532-537,I0012,共7页
Organic solar cells(OSCs)have received great attention for the prominent advantage of low-cost,light-weight and potential for fabricating flexible and semi-transparent device via roll-to-roll printing toward making be... Organic solar cells(OSCs)have received great attention for the prominent advantage of low-cost,light-weight and potential for fabricating flexible and semi-transparent device via roll-to-roll printing toward making better use of inexhaustible renewable clean energy during the past years[1-4]. 展开更多
关键词 Organic solar cells Non-fullerene acceptor BENZOTRIAZOLE Side-chain strategy
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部