Shale,as a kind of brittle rock,often exhibits different nonlinear stress-strain behavior,failure and timedependent behavior under different strain rates.To capture these features,this work conducted triaxial compress...Shale,as a kind of brittle rock,often exhibits different nonlinear stress-strain behavior,failure and timedependent behavior under different strain rates.To capture these features,this work conducted triaxial compression tests under axial strain rates ranging from 5×10-6 s-1 to 1×10-3 s-1.The results show that both elastic modulus and peak strength have a positive correlation relationship with strain rates.These strain rate-dependent mechanical behaviors of shale are originated from damage growth,which is described by a damage parameter.When axial strain is the same,the damage parameter is positively correlated with strain rate.When strain rate is the same,with an increase of axial strain,the damage parameter decreases firstly from an initial value(about 0.1 to 0.2),soon reaches its minimum(about 0.1),and then increases to an asymptotic value of 0.8.Based on the experimental results,taking yield stress as the cut-off point and considering damage variable evolution,a new measure of micro-mechanical strength is proposed.Based on the Lemaitre’s equivalent strain assumption and the new measure of micro-mechanical strength,a statistical strain-rate dependent damage constitutive model for shale that couples physically meaningful model parameters was established.Numerical back-calculations of these triaxial compression tests results demonstrate the ability of the model to reproduce the primary features of the strain rate dependent mechanical behavior of shale.展开更多
The general construction procedure of the steel middle pylon is briefly introduced. The alignment control of the pylon is carried out during the whole process of the construction. The control concept is extended to th...The general construction procedure of the steel middle pylon is briefly introduced. The alignment control of the pylon is carried out during the whole process of the construction. The control concept is extended to the manufacture stage. The manufacturing alignment error is strictly controlled in the segments precast process in factory, and the error is recognized and predicted precisely during the installation stage. The adjusting joints are employed to amend the accumulated error, which ensure that the steel pylon alignment could satisfy the precision requirements after installation.展开更多
Taking Sutong Bridge as the object investigated, the correctness of the geometry control method is verified by numerical simulation analysis. Taking the impact of geometric nonlinearity into account, the impacts of st...Taking Sutong Bridge as the object investigated, the correctness of the geometry control method is verified by numerical simulation analysis. Taking the impact of geometric nonlinearity into account, the impacts of structural geo- metric profile induced by temporary loads and temperature field during the construction procedure are investigated. The simulation results indicate that only the stage state of the structure during construction is affected. Satisfied outcome of construction control can be achieved based on ~eometrv control method.展开更多
Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape al...Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape along the bridge, and portal shape in the transverse direction for the first time in China. In this paper, the basic construction procedure, equipment, construction steps, the key construction technologies and methods of steel pylon are introduced.展开更多
Since the Three Gorges Dam(TGD)was put into operation,the flood water level at an identical discharge rate has not displayed a decreasing trend along the middle reaches of the Yangtze River(MYR).The flow resistance va...Since the Three Gorges Dam(TGD)was put into operation,the flood water level at an identical discharge rate has not displayed a decreasing trend along the middle reaches of the Yangtze River(MYR).The flow resistance variations of the channel and bars in response to the operation of the TGD remain poorly understood,despite the importance of understanding these for water disaster mitigation and water environment regulation.Herein,the impacts of the TGD on the downstream flow resistance of the channel and bars in the MYR were analyzed using systematic surveys of hydrological datasets,cross-sectional profiles,sediment datasets,and remote sensing images,during different periods.Under the actual natural conditions in the MYR,a modified semi-empirical formula,which considered the grain,dune resistance,as well as the topographic features of the riverbed,was proposed to predict the channel resistance.Furthermore,the effect of various dam-control flow and sediment elements on the variation in different flow resistance components,and the corresponding relationships among them were investigated.Results showed a decline in the comprehensive,channel,and bar resistances as the discharge increased,whereas there was a slight increase when reaching the bank-full discharges.Notably,the bar resistance occupied 65%,while the channel resistance,in which dune resistance was much larger than grain resistance,contributed 35%to the comprehensive resistance.In addition,while flow resistance rose over time,there was a decline as the distance from the TGD increased.In conclusion,the increased dune and bar resistances,interpreted by the fluctuated channel longitudinal profile and growing vegetated area on bars,were the dominant factors preventing the flood water level from dropping.展开更多
基金financially supported by the China Scholarship Council projectthe National Natural Science Foundation of China(grants No.51574218,41688103,51678171,51608139,U1704243 and 51709113)+4 种基金the Guangdong Science and Technology Department(grant No.2015B020238014)the Guangzhou Science Technology and Innovation Commission(grant No.201604016021)the High-level Talent Research Launch Project(grant No.950318066)the Shandong Provincial Natural Science Foundation,China(grants No.ZR2017PD001 and ZR2018BD013)the Science Foundation of Chinese Academy of Geological Sciences(grant No.JYYWF20181201)
文摘Shale,as a kind of brittle rock,often exhibits different nonlinear stress-strain behavior,failure and timedependent behavior under different strain rates.To capture these features,this work conducted triaxial compression tests under axial strain rates ranging from 5×10-6 s-1 to 1×10-3 s-1.The results show that both elastic modulus and peak strength have a positive correlation relationship with strain rates.These strain rate-dependent mechanical behaviors of shale are originated from damage growth,which is described by a damage parameter.When axial strain is the same,the damage parameter is positively correlated with strain rate.When strain rate is the same,with an increase of axial strain,the damage parameter decreases firstly from an initial value(about 0.1 to 0.2),soon reaches its minimum(about 0.1),and then increases to an asymptotic value of 0.8.Based on the experimental results,taking yield stress as the cut-off point and considering damage variable evolution,a new measure of micro-mechanical strength is proposed.Based on the Lemaitre’s equivalent strain assumption and the new measure of micro-mechanical strength,a statistical strain-rate dependent damage constitutive model for shale that couples physically meaningful model parameters was established.Numerical back-calculations of these triaxial compression tests results demonstrate the ability of the model to reproduce the primary features of the strain rate dependent mechanical behavior of shale.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-180)
文摘The general construction procedure of the steel middle pylon is briefly introduced. The alignment control of the pylon is carried out during the whole process of the construction. The control concept is extended to the manufacture stage. The manufacturing alignment error is strictly controlled in the segments precast process in factory, and the error is recognized and predicted precisely during the installation stage. The adjusting joints are employed to amend the accumulated error, which ensure that the steel pylon alignment could satisfy the precision requirements after installation.
基金National Science and Technology Supporting Program of China ( No. 2006BAG04B03)
文摘Taking Sutong Bridge as the object investigated, the correctness of the geometry control method is verified by numerical simulation analysis. Taking the impact of geometric nonlinearity into account, the impacts of structural geo- metric profile induced by temporary loads and temperature field during the construction procedure are investigated. The simulation results indicate that only the stage state of the structure during construction is affected. Satisfied outcome of construction control can be achieved based on ~eometrv control method.
基金National Science and Technology Support Program of China ( No. 2009BAG15B02) Key Pro-grams for Science and Technology Development of Chinese Transportation Industry( No. 2008-353-332-180)
文摘Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape along the bridge, and portal shape in the transverse direction for the first time in China. In this paper, the basic construction procedure, equipment, construction steps, the key construction technologies and methods of steel pylon are introduced.
基金National Natural Science Foundation of China(51779185)National Key Research and Development Program of China(2018YFC0407201)。
文摘Since the Three Gorges Dam(TGD)was put into operation,the flood water level at an identical discharge rate has not displayed a decreasing trend along the middle reaches of the Yangtze River(MYR).The flow resistance variations of the channel and bars in response to the operation of the TGD remain poorly understood,despite the importance of understanding these for water disaster mitigation and water environment regulation.Herein,the impacts of the TGD on the downstream flow resistance of the channel and bars in the MYR were analyzed using systematic surveys of hydrological datasets,cross-sectional profiles,sediment datasets,and remote sensing images,during different periods.Under the actual natural conditions in the MYR,a modified semi-empirical formula,which considered the grain,dune resistance,as well as the topographic features of the riverbed,was proposed to predict the channel resistance.Furthermore,the effect of various dam-control flow and sediment elements on the variation in different flow resistance components,and the corresponding relationships among them were investigated.Results showed a decline in the comprehensive,channel,and bar resistances as the discharge increased,whereas there was a slight increase when reaching the bank-full discharges.Notably,the bar resistance occupied 65%,while the channel resistance,in which dune resistance was much larger than grain resistance,contributed 35%to the comprehensive resistance.In addition,while flow resistance rose over time,there was a decline as the distance from the TGD increased.In conclusion,the increased dune and bar resistances,interpreted by the fluctuated channel longitudinal profile and growing vegetated area on bars,were the dominant factors preventing the flood water level from dropping.