期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Elevated brain temperature under severe heat exposure impairs cortical motor activity and executive function
1
作者 Xiang Ren Tan Mary C.Stephenson +4 位作者 Sharifah Badriyah Alhadad Kelvin W.Z.Loh Tuck Wah Soong Jason K.W.Lee Ivan C.C.Low 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第2期233-244,共12页
Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stres... Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stress affects brain physiology and function.Methods:Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures(T_(re))attained 39.5℃,inducing exertional or passive hyperthermia,respectively.In a separate trial,blended ice was ingested before and during exercise as a cooling strategy.Data were compared to a control condition with seated rest(normothermic).Brain temperature(T_(br)),cerebral perfusion,and task-based brain activity were assessed using magnetic resonance imaging techniques.Results:T_(br)in motor cortex was found to be tightly regulated at rest(37.3℃±0.4℃(mean±SD))despite fluctuations in T_(re).With the development of hyperthermia,T_(br)increases and dovetails with the rising T_(re).Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks,implying a reduced central motor drive in hyperthermic participants(T_(re)=38.5℃±0.1℃).Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia.Executive function was poorer under a passive hyperthermic state,and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex.Conversely,ingestion of blended ice before and during exercise alleviated the rise in both T_(re)and T_(bc)and mitigated heat-related neural perturbations.Conclusion:Severe heat exposure elevates T_(br),disrupts motor cortical activity and executive function,and this can lead to impairment of physical and cognitive performance. 展开更多
关键词 Brain functional activity COGNITION Heat stress HYPERTHERMIA Motor function
下载PDF
A Flexible and Lightweight Biomass-Reinforced Microwave Absorber 被引量:11
2
作者 Yan Cheng Justin Zhu Yeow Seow +2 位作者 Huanqin Zhao Zhichuan JXu Guangbin Ji 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第10期1-15,共15页
Developing a flexible,light-weight and effective electromagnetic(EM)absorber remains challenging despite being on increasing demand as more wearable devices and portable electronics are commercialized.Herein,we report... Developing a flexible,light-weight and effective electromagnetic(EM)absorber remains challenging despite being on increasing demand as more wearable devices and portable electronics are commercialized.Herein,we report a flexible and lightweight hybrid paper by a facile vacuumfiltration-induced self-assembly process,in which cotton-derived carbon fibers serve as flexible skeletons,compactly surrounded by other microwave-attenuating components(reduced graphene oxide and Fe3O4@C nanowires).Owing to its unique architecture and synergy of the three components,the asprepared hybrid paper exhibits flexible and lightweight features as well as superb microwave absorption performance.Maximum absorption intensity with reflection loss as low as-63 dB can be achieved,and its broadest frequency absorption bandwidth of 5.8 GHz almost covers the entire Ku band.Such a hybrid paper is promising to cope with ever-increasing EM interference.The work also paves the way to develop low-cost and flexible EM wave absorber from biomass through a facile method. 展开更多
关键词 FLEXIBLE BIOMASS Microwave absorption Dielectric loss Magnetic loss
下载PDF
Electrodeposited Sulfur and CoxS Electrocatalyst on Buckypaper as High-Performance Cathode for Li-S Batteries 被引量:2
3
作者 Yi Zhan Andrea Buffa +2 位作者 Linghui Yu Zhichuan JXu Daniel Mandler 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第10期263-275,共13页
Lithium-sulfur batteries(LSBs)are considered as the next generation of advanced rechargeable batteries because of their high energy density.In this study,sulfur and CoxS electrocatalyst are deposited on carbon nanotub... Lithium-sulfur batteries(LSBs)are considered as the next generation of advanced rechargeable batteries because of their high energy density.In this study,sulfur and CoxS electrocatalyst are deposited on carbon nanotube buckypaper(S/CoxS/BP)by a facile electrodeposition method and are used as a binder-free high-performance cathode for LSBs.Elemental sulfur is deposited on buckypaper by electrooxidation of a polysulfide solution(-S6^2-).This approach substantially increased the current and time efficiency of sulfur electrochemical deposition on conductive material for LSBs.S/CoxS/BP cathode could deliver an initial discharge capacity as high as 1650 mAh g^-1 at 0.1 C,which is close to the theoretical capacity of sulfur.At current rate of 0.5 C,the S/CoxS/BP has a capacity of 1420 mAh g^-1 at the first cycle and 715 mAh g^-1 after 500 cycles with a fading rate of 0.099%per cycle.The high capacity of S/CoxS/BP is attributed to both the homogeneous dispersion of nanosized sulfur within BP and the presence of CoxS catalyst.The sodium dodecyl sulfate(SDS)pretreatment of BP renders it polarity to bind polysulfides and thus facilitates the good dispersibility of nanosized sulfur within BP.CoxS catalyst accelerates the kinetics of polysulfide conversion and reduces the presence of polysulfide in the cathode,which suppresses the polysulfide diffusion to anode,i.e.,the shuttle effect.The mitigation of the active material loss improves not only the capacity but also the cyclability of S/CoxS/BP. 展开更多
关键词 ELECTRODEPOSITION Lithium sulfur batteries BUCKYPAPER ELECTROCATALYSTS
下载PDF
Catalytically altering the redox pathway of sulfur in propylene carbonate electrolyte using dual-nitrogen/oxygen-containing carbon
4
作者 Linghui Yu Heng Zhang +9 位作者 Luyuan Paul Wang Samuel Jun Hoong Ong Shibo Xi Bo Chen Rui Guo Ting Wang Yonghua Du Wei Chen Ovadia Lev Zhichuan J.Xu 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期224-233,共10页
Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility ... Carbonate electrolytes are one of the most desirable electrolytes for high-energy lithium-sulfur batteries(LSBs)because of their successful implementation in commercial Li-ion batteries.The low-polysulfide-solubility feature of some carbonate solvents also makes them very promising for overcoming the shuttle effects of LSBs.However,regular sulfur electrodes experience undesired electrochemical mechanisms in carbonate electrolytes due to side reactions.In this study,we report a catalytic redox mechanism of sulfur in propylene carbonate(PC)electrolyte based on a compari-son study.The catalytic mechanism is characterized by the interactions between polysulfides and dual N/O functional groups on the host carbon,which largely prevents side reactions between polysulfides and the carbonate electrolyte.Such a mechanism coupled with the low-polysulfide-solubility feature leads to stable cycling of LSBs in PC electrolyte.Favorable dual N/O functional groups are identified via a density functional theory study.This work provides an alternative route for enabling LSBs in carbonate electrolytes. 展开更多
关键词 Energy storage Lithium-sulfur battery Catalytic redox reaction Porous carbon Carbonate electrolyte
下载PDF
The possible implications of magnetic field effect on understanding the reactant of water splitting 被引量:3
5
作者 Chao Wei Zhichuan J.Xu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第1期148-157,共10页
Electrochemical water splitting consists of two elementary reactions i.e.,hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Developing robust HER and OER technologies necessitates a molecular picture ... Electrochemical water splitting consists of two elementary reactions i.e.,hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Developing robust HER and OER technologies necessitates a molecular picture of reaction mechanism,yet the reactants for water splitting reactions are unfortunately not fully understood.Here we utilize magnetic field to understand proton transport in HER,and hydroxide ion transport in OER,to discuss the possible implications on understanding the reactants for HER and OER.Magnetic field is a known tool for changing the movement of charged species like ions,e.g.the magnetic‐field‐improved Cu^(2+)transportation near the electrode in Cu electrodeposition.However,applying a magnetic field does not affect the HER or OER rate across various pH,which challenges the traditional opinion that charged species(i.e.proton and hydroxide ion)act as the reactant.This anomalous response of HER and OER to magnetic field,and the fact that the transport of proton and hydroxide ion follow Grotthuss mechanism,collectively indicate water may act as the universal reactant for HER and OER across various pH.With the aid of magnetic field,this work serves as an understanding of water might be the reactant in HER and OER,and possibly in other electrocatalysis reactions involving protonation and deprotonation step.A model that simply focuses on the charged species but overlooking the complexity of the whole electrolyte phase where water is the dominant species,may not reasonably reflect the electrochemistry of HER and OER in aqueous electrolyte. 展开更多
关键词 ELECTROCATALYSIS Water splitting Magnetic field Lorenz force Metal deposition
下载PDF
Optimizing interfacial electronic coupling with metal oxide to activate inert polyaniline for superior electrocatalytic hydrogen generation 被引量:9
6
作者 Zhen-Feng Huang Jiajia Song +6 位作者 Yonghua Du Shuo Dou Libo Sun Wei Chen Kaidi Yuan Zhengfei Dai Xin Wang 《Carbon Energy》 CAS 2019年第1期77-84,共8页
Tuning and optimization of electronic structures and related reaction energetics are critical toward the rational design of efficient electrocatalysts.Herein,experimental and theoretical calculation demonstrate the or... Tuning and optimization of electronic structures and related reaction energetics are critical toward the rational design of efficient electrocatalysts.Herein,experimental and theoretical calculation demonstrate the originally inert N site within polyaniline(PANI)can be activated for hydrogen evolution by proper d-πinterfacial electronic coupling with metal oxide.As a result,the assynthesized WO3 assemblies@PANI via a facile redox-induced assembly and in situ polymerization,exhibits the electrocatalytic production of hydrogen better than other control samples including W18O49@PANI and most of the reported nobel-metal-free electrocatalysts,with low overpotential of 74 mV at 10 mA·cm−2 and small Tafel slope of 46 mV·dec−1 in 0.5M H2SO4(comparable to commercial Pt/C).The general efficacy of this methodology is also validated by extension to other metal oxides such as MoO3 with similar improvements. 展开更多
关键词 hydrogen evolution interfacial electronic coupling metal oxide N-H bond POLYANILINE
下载PDF
Encapsulation of MnS Nanocrystals into N,S-Co-doped Carbon as Anode Material for Full Cell Sodium-Ion Capacitors
7
作者 Shaohui Li Jingwei Chen +3 位作者 Jiaqing Xiong Xuefei Gong Jinghao Ciou Pooi See Lee 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第3期55-68,共14页
Sodium-ion capacitors(SICs)have received increasing interest for grid stationary energy storage application due to their affordability,high power,and energy densities.The major challenge for SICs is to overcome the ki... Sodium-ion capacitors(SICs)have received increasing interest for grid stationary energy storage application due to their affordability,high power,and energy densities.The major challenge for SICs is to overcome the kinetics imbalance between faradaic anode and nonfaradaic cathode.To boost the Na+reaction kinetics,the present work demonstrated a high-rate MnS-based anode by embedding the MnS nanocrystals into the N,S-co-doped carbon matrix(MnS@NSC).Benefiting from the fast pseudocapacitive Na+storage behavior,the resulting composite exhibits extraordinary rate capability(205.6 mAh g−1 at 10 A g−1)and outstanding cycling stability without notable degradation after 2000 cycles.A prototype SIC was demonstrated using MnS@NSC anode and N-doped porous carbon(NC)cathode;the obtained hybrid SIC device can display a high energy density of 139.8 Wh kg−1 and high power density of 11,500 W kg−1,as well as excellent cyclability with 84.5%capacitance retention after 3000 cycles.The superior electrochemical performance is contributed to downsizing of MnS and encapsulation of conductive N,S-co-doped carbon matrix,which not only promote the Na+and electrons transport,but also buffer the volume variations and maintain the structure integrity during Na+insertion/extraction,enabling its comparable fast reaction kinetics and cyclability with NC cathode. 展开更多
关键词 Sodium-ion capacitor Nanocrystal Co-doped carbon Pseudocapacitive control behavior
下载PDF
Valorization of poly-β-hydroxybutyrate(PHB)-based bioplastic waste in anaerobic digesters of food waste for bioenergy generation:reactor performance,microbial community analysis,and bioplastic biodegradation
8
作者 Le Zhang To-Hung Tsui +2 位作者 Jiahua Fu Yanjun Dai Yen Wah Tong 《Carbon Neutrality》 2022年第1期523-536,共14页
This study aims to investigate the significance and biodegradation pathways of PHB-based bioplastic in anaerobic digesters treating food waste,where the reactor performance of changed methane generation,bioplastic bio... This study aims to investigate the significance and biodegradation pathways of PHB-based bioplastic in anaerobic digesters treating food waste,where the reactor performance of changed methane generation,bioplastic biodegradation efficiency,and bioinformatic analysis of functional microbes were emphasized.The results showed that PHB-based plastic film could be partially biodegraded in the food waste digester,and a bioaugmentation use of Alcaligenes Faecalis(AF)and Bacillus Megaterium(BM)was beneficial to largely accelerate the degradation process through a beneficial shift of both the functional bacterial and archaeal species.Microbial community analysis indicated that the major bacterial species belonged to genera Candidatus_Cloacimonas,Rikenellaceae,and Defluviitoga,while the dominant methanogenic archaeal species belonged to genera Methanomassiliicoccus,Methanosarcina,and Methanosaeta.Bioplastic biodegradation analysis suggested that the optimal fractions of AF and BM for PHB-based plastic degradation were 50% AF and 75% BM,respectively,which deserves further optimization and scale-up validation.The finding of this study would contribute to the combined management of PHB-based bioplastic with food waste for clean energy recovery and a greener environment. 展开更多
关键词 Anaerobic digestion Biodegradable plastic Waste management Energy recovery Bioinformatic analysis Poly-β-hydroxybutyrate(PHB)
下载PDF
Superior comprehensive properties of LaFe_(11.8)Si_(1.2)/Ce_(60)Co_(40) magnetocaloric composites
9
作者 Xichun Zhong Yuanxin Li +7 位作者 Yucai Wu Jiaohong Huang Cuilan Liu Jian Liu Zhongwu Liu Minglong Zhong Zhenchen Zhong R.V.Ramanujan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第6期1073-1086,I0003,共15页
LaFe_(11.8)Si_(1.2)/10 wt%Ce_(60)Co_(40) composites were prepared by spark plasma sintering and subsequent diffusion annealing.A novel core-shell structure is observed with the LaFe11.8Si1.2 particles as the core and ... LaFe_(11.8)Si_(1.2)/10 wt%Ce_(60)Co_(40) composites were prepared by spark plasma sintering and subsequent diffusion annealing.A novel core-shell structure is observed with the LaFe11.8Si1.2 particles as the core and the(La,Ce)_(2)(Fe,Co,Si)_(17)(2:17)phase as the shell.As diffusion annealing time(t_(a))increases,this core-shell structure is replaced by the formation of the(La,Ce)_(1)(Fe,Co,Si)_(13) phase.Annealing at 1323 K for 12 h results in samples with(-ΔSM)^(max) of 9.30 J/(kg·K)(Δμ0H=2 T),good mechanical properties((σbc)^(max)=402 MPa,ε=4.21%)and thermal conductivity of 8.7 W/(m·K).Thus,bulk composites with excellent comprehensive properties for magnetic refrigeration are obtained in this work. 展开更多
关键词 LaFe_(11.8)Si_(1.2)/Ce_(60)Co_(40)composites Spark plasma sintering Diffusion annealing Microstructure evolution Magnetocaloric effect RAREEARTHS
原文传递
Influence of gadolinium and dysprosium substitution on magnetic properties and magnetocaloric effect of Fe78-xRExSi4Nb5B12Cu1 amorphous alloys 被引量:2
10
作者 Lizhong Zhao Huacun Tian +3 位作者 Xichun Zhong Zhongwu Liu Jean-Marc Greneche R.V.Ramanujan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第12期1317-1321,共5页
Amorphous Fe78-xRExSi4 Nb5 B12Cu1(RE=Gd,Dy) ribbons with different RE contents were prepared by melt spinning to investigate the effect of heavy rare earth(Gd,Dy) substitution on the hyperfine structure,magnetic prope... Amorphous Fe78-xRExSi4 Nb5 B12Cu1(RE=Gd,Dy) ribbons with different RE contents were prepared by melt spinning to investigate the effect of heavy rare earth(Gd,Dy) substitution on the hyperfine structure,magnetic properties and magnetocaloric effect.The Curie temperature of RE substituted alloys,hyperfine field and magnetic moments of Fe atoms initially increase up to 1 at% RE content and then decrease monotonously for increasing RE content up to 10 at%.The dependence of magnetic entropy change(-△SM) and refrigeration capacity(RC) of the alloys on RE contents displays the same tendency.The RCAREA values of the alloys substituted with 1 at% Gd and Dy are similar to those of recently reported Fe-based metallic glasses with enhanced RC values compared with those of Gd5 Ge1.9Si2 Fe0.1.Enhanced-△SM and RC values,negligible coercive force and hysteresis commonly make these Fe78-xREx-Si4 Nb5 B12Cu1 amorphous alloys as low-cost candidates for high-temperature magnetic refrigeration. 展开更多
关键词 Magnetic properties Magnetocaloric effect Refrigeration capacity Rare earths
原文传递
Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides 被引量:3
11
作者 Fanxu Meng Chencheng Dai +9 位作者 Zheng Liu Songzhu Luo Jingjie Ge Yan Duan Gao Chen Chao Wei Riccardo Ruixi Chen Jiarui Wang Daniel Mandler Zhichuan J.Xu 《eScience》 2022年第1期87-94,共8页
Electrochemically producing formate by oxidizing methanol is a promising way to add value to methanol.Noble metal-based electrocatalysts,which have been extensively studied for the methanol oxidation reaction,can cata... Electrochemically producing formate by oxidizing methanol is a promising way to add value to methanol.Noble metal-based electrocatalysts,which have been extensively studied for the methanol oxidation reaction,can catalyze the complete oxidation of methanol to carbon dioxide,but not the mild oxidation to formate.As a result,exploring efficient and earth-abundant electrocatalysts for formate production from methanol is of interest.Herein,we present the electro-oxidation of methanol to formate,catalyzed by iron-substituted lanthanum cobaltite(LaCo_(1-x)Fe_(x)O_(3)).The Fe/Co ratio in the oxides greatly influences the activity and selectivity.This effect is attributed to the higher affinity of Fe and Co to the two reactants:CH3OH and OH,respectively.Because a balance between these affinities is favored,LaCo_(0.5)Fe_(0.5)O_(3) shows the highest formate production rate,at 24.5 mmol h^(-1) g_(oxide)^(-1),and a relatively high Faradaic efficiency of 44.4%in a series of(LaCo_(1-x)Fe_(x)O_(3))samples(x=0.00,0.25,0.50,0.75,1.00)at 1.6 V versus a reversible hydrogen electrode. 展开更多
关键词 METHANOL Electro-oxidation FORMATE OXIDES PEROVSKITE
原文传递
Effects of catalyst mass loading on electrocatalytic activity:An example of oxygen evolution reaction 被引量:2
12
作者 Linghui Yu Shengnan Suna +1 位作者 Haiyan Li Zhichuan JXu 《Fundamental Research》 CAS 2021年第4期448-452,共5页
The evaluation of the intrinsic activity of catalysts is the most basic in searching energy-and cost-efficient catalyst materials for various applications.The accurate determination of the intrinsic activity is essent... The evaluation of the intrinsic activity of catalysts is the most basic in searching energy-and cost-efficient catalyst materials for various applications.The accurate determination of the intrinsic activity is essential for identifying efficient catalysts.While a huge number of studies of electrocatalysis for various applications have been reported,the effects of electrode loading on the apparent intrinsic activity obtained experimentally have been rarely discussed.With a high mass loading on the electrode,not all the catalyst surfaces can be electrochemically active because not all the surfaces can be wetted by the electrolyte.The loading also affects the transport of electrons over the electrode as well as the transport of ions in the electrolyte,and thus affects the kinetics.These lead to the derivations of the apparent intrinsic activity from the real intrinsic activity.Herein,for better understanding the derivations,we evaluate and discuss the effects of electrode mass loading using oxygen evolution reaction as an example. 展开更多
关键词 ELECTROCATALYSIS Water splitting Oxygen reduction reaction Electrode loading
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部