期刊文献+
共找到840篇文章
< 1 2 42 >
每页显示 20 50 100
Enhancing multifunctional photocatalysis with acetate-assisted cesium doping and unlocking the potential of Z-scheme solar water splitting
1
作者 Mengmeng Ma Jingzhen Li +6 位作者 Xiaogang Zhu Kong Liu Kaige Huang Guodong Yuan Shizhong Yue Zhijie Wang Shengchun Qu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期178-195,共18页
Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion ... Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion and doping kinetics of precursors with high melting points,along with imprecise regulation,have raised the debate on whether Cs doping could make sense.For this matter,we attempt to confirm the positive effects of Cs doping on multifunctional photocatalysis by first using cesium acetate with the character of easy manipulation.The optimized Csdoped g-C_(3)N_(4)(CCN)shows a 41.6-fold increase in visible-light-driven hydrogen evolution reaction(HER)compared to pure g-C_(3)N_(4) and impressive degradation capability,especially with 77%refractory tetracycline and almost 100%rhodamine B degradedwithin an hour.The penetration ofCs+is demonstrated to be a mode of interlayer doping,and Cs–N bonds(especially with sp^(2) pyridine N in C═N–C),along with robust chemical interaction and electron exchange,are fabricated.This atomic configuration triggers the broadened spectral response,the improved charge migration,and the activated photocatalytic capacity.Furthermore,we evaluate the CCN/cadmium sulfide hybrid as a Z-scheme configuration,promoting the visible HER yield to 9.02 mmol g^(−1) h^(−1),which is the highest ever reported among all CCN systems.This work adds to the rapidly expanding field of manipulation strategies and supports further development of mediating served for photocatalysis. 展开更多
关键词 acetate-assisted cesium doping MULTIFUNCTIONAL PHOTOCATALYSIS Z-scheme
下载PDF
Energy Landscape and Phase Competition of CsV_(3)Sb_(5),CsV_(6)Sb_(6)and TbMn_(6)Sn_(6)-Type Kagome Materials
2
作者 蔡光辉 姜昱韬 +5 位作者 周辉 喻泽 蒋坤 石友国 孟胜 刘淼 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第11期78-85,共8页
Finding viable Kagome lattices is vital for materializing novel phenomena in quantum materials.In this study,we performed element substitutions on CsV_(3)Sb_(5)with space group P 6/mmm,TbMn_(6)Sn_(6)with space group P... Finding viable Kagome lattices is vital for materializing novel phenomena in quantum materials.In this study,we performed element substitutions on CsV_(3)Sb_(5)with space group P 6/mmm,TbMn_(6)Sn_(6)with space group P 6/mmm,and CsV_(6)Sb_(6)with space group R3m,as the parent compounds.Totally 4158 materials were obtained through element substitutions,and these materials were then calculated via density functional theory in high-throughput mode.Afterwards,48 materials were identified with high thermodynamic stability(E_(hull)<5 meV/atom).Furthermore,we compared the thermodynamic stability of three different phases with the same elemental composition and predicted some competing phases that may arise during material synthesis.Finally,by calculating the electronic structures of these materials,we attempted to identify patterns in the electronic structure variations as the elements change.This study provides guidance for discovering promising AM_(3)X_(5)/AM_(6)X_(6)Kagome materials from a vast phase space. 展开更多
关键词 THERMODYNAMIC stability
原文传递
Two-step growth of β-Ga_(2)O_(3) on c-plane sapphire using MOCVD for solar-blind photodetector
3
作者 Peipei Ma Jun Zheng +3 位作者 Xiangquan Liu Zhi Liu Yuhua Zuo Buwen Cheng 《Journal of Semiconductors》 EI CAS CSCD 2024年第2期51-56,共6页
In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-... In this work,a two-step metal organic chemical vapor deposition(MOCVD)method was applied for growingβ-Ga_(2)O_(3) film on c-plane sapphire.Optimized buffer layer growth temperature(T_(B))was found at 700℃ and theβ-Ga_(2)O_(3) film with full width at half maximum(FWHM)of 0.66°was achieved.A metal−semiconductor−metal(MSM)solar-blind photodetector(PD)was fabricated based on theβ-Ga_(2)O_(3) film.Ultrahigh responsivity of 1422 A/W@254 nm and photo-to-dark current ratio(PDCR)of 10^(6) at 10 V bias were obtained.The detectivity of 2.5×10^(15) Jones proved that the photodetector has outstanding performance in detecting weak signals.Moreover,the photodetector exhibited superior wavelength selectivity with rejection ratio(R_(250 nm)/R_(400 nm))of 105.These results indicate that the two-step method is a promising approach for preparation of high-qualityβ-Ga_(2)O_(3)films for high-performance solar-blind photodetectors. 展开更多
关键词 MOCVD two-step growth β-Ga_(2)O_(3) solar-blind photodetector responsivity
下载PDF
Effect of overheating-induced minor addition on Zr-based metallic glasses
4
作者 杨福 薄振兴 +7 位作者 黄瑶 王雨田 孙博阳 鲁振 孙保安 柳延辉 汪卫华 潘明祥 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期118-125,共8页
Melt treatment is well known to have an important influence on the properties of metallic glasses(MGs).However,for the MGs quenched from different melt temperatures with a quartz tube,the underlying physical origin re... Melt treatment is well known to have an important influence on the properties of metallic glasses(MGs).However,for the MGs quenched from different melt temperatures with a quartz tube,the underlying physical origin responsible for the variation of properties remains poorly understood.In the present work,we systematically studied the influence of melt treatment on the thermal properties of a Zr50Cu36Al14 glass-forming alloy and unveiled the microscopic origins.Specifically,we quenched the melt at different temperatures ranging from 1.1Tl to 1.5Tl(Tl is the liquidus temperature)to obtain melt-spun MG ribbons and investigated the variation of thermal properties of the MGs upon heating.We found that glass transition temperature,Tg,increases by as much as 36 K,and the supercooled liquid region disappears in the curve of differential scanning calorimetry when the melt is quenched at a high temperature up to 1.5Tl.The careful chemical analyses indicate that the change in glass transition behavior originates from the incorporation of oxygen and silicon in the molten alloys.The incorporated oxygen and silicon can both enhance the interactions between atoms,which renders the cooperative rearrangements of atoms difficult,and thus enhances the kinetic stability of the MGs. 展开更多
关键词 metallic glass thermal properties melt treatment OVERHEATING oxygen content
原文传递
Decoupling of temporal/spatial broadening effects in Doppler wind LiDAR by 2D spectral analysis
5
作者 刘珍 张云鹏 +3 位作者 竹孝鹏 刘继桥 毕德仓 陈卫标 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期447-452,共6页
Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and freque... Pulse echo accumulation is commonly employed in coherent Doppler wind LiDAR(light detection and ranging)under the assumption of steady wind.Here,the measured spectral data are analyzed in the time dimension and frequency dimension to cope with the temporal wind shear and achieve the optimal accumulation time.A hardware-efficient algorithm combining the interpolation and cross-correlation is used to enhance the wind retrieval accuracy by reducing the frequency sampling interval and then reduce the spectral width calculation error.Moreover,the temporal broadening effect and spatial broadening effect are decoupled according to the strategy we developed. 展开更多
关键词 Doppler wind LiDAR spectral analysis hardware efficiency spectrum broadening effects
原文传递
From the perspective of experimental practice: High-throughput computational screening in photocatalysis
6
作者 Yunxuan Zhao Junyu Gao +2 位作者 Xuanang Bian Han Tang Tierui Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期1-6,共6页
Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is... Photocatalysis,a critical strategy for harvesting sunlight to address energy demand and environmental concerns,is underpinned by the discovery of high-performance photocatalysts,thereby how to design photocatalysts is now generating widespread interest in boosting the conversion effi-ciency of solar energy.In the past decade,computational technologies and theoretical simulations have led to a major leap in the development of high-throughput computational screening strategies for novel high-efficiency photocatalysts.In this viewpoint,we started with introducing the challenges of photocatalysis from the view of experimental practice,especially the inefficiency of the traditional“trial and error”method.Sub-sequently,a cross-sectional comparison between experimental and high-throughput computational screening for photocatalysis is presented and discussed in detail.On the basis of the current experimental progress in photocatalysis,we also exemplified the various challenges associated with high-throughput computational screening strategies.Finally,we offered a preferred high-throughput computational screening procedure for pho-tocatalysts from an experimental practice perspective(model construction and screening,standardized experiments,assessment and revision),with the aim of a better correlation of high-throughput simulations and experimental practices,motivating to search for better descriptors. 展开更多
关键词 PHOTOCATALYSIS High-throughput computational screening PHOTOCATALYST Theoretical simulations Experiments
下载PDF
Photostability of colloidal single photon emitter in near-infrared regime at room temperature
7
作者 靳思玥 许兴胜 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期515-520,共6页
The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum... The photostability of a colloidal single photon emitter in near-infrared regime at room temperature is investigated.The fluorescence lifetime,blinking phenomenon,and anti-bunching effect of a single CdTeSe/ZnS quantum dot with an emission wavelength of 800 nm at room temperature are studied.The second-order correlation function at zero delay time is much smaller than 0.1,which proves that the emission from single quantum dots at 800 nm is a highly pure single-photon source.The effects of the irradiation duration on the fluorescence from single quantum dots are analyzed.The experimental results can be explained by a recombination model including a multi-nonradiative recombination center model and a multi-charged model. 展开更多
关键词 colloidal quantum dots single photon source BLINKING
原文传递
Distinct behavior of electronic structure under uniaxial strain in BaFe_(2)As_(2)
8
作者 李佳俊 Giao Ngoc Phan +10 位作者 王兴玉 杨发枝 胡全欣 贾可 赵金 刘文尧 张任杰 石友国 李世亮 钱天 丁洪 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期675-679,共5页
We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy spl... We report a study of the electronic structure of BaFe_(2)As_(2) under uniaxial strains using angle-resolved photoemission spectroscopy and transport measurements. Two electron bands at the MY point, with an energy splitting of 50 meV in the strain-free sample, shift downward and merge into each other under a large uniaxial strain, while three hole bands at theГ point shift downward together. However, we also observed an enhancement of the resistance anisotropy under uniaxial strains by electrical transport measurements, implying that the applied strains strengthen the electronic nematic order in BaFe_(2)As_(2). These observations suggest that the splitting of these two electron bands at the MY point is not caused by the nematic order in BaFe_(2)As_(2). 展开更多
关键词 iron-based superconductor angle-resolved photoelectron spectroscopy uniaxial strain symmetry breaking
原文传递
Stable photocurrent-voltage characteristics of perovskite single crystal detectors obtained by pulsed bias
9
作者 刘新 陈之龙 +4 位作者 王虎 张雯清 董昊 王鹏祥 邵宇川 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期209-214,共6页
Photocurrent-voltage characterization is a crucial method for assessing key parameters in x-ray or y-ray semiconductor detectors,especially the carrier mobility lifetime product.However,the high biases during photocur... Photocurrent-voltage characterization is a crucial method for assessing key parameters in x-ray or y-ray semiconductor detectors,especially the carrier mobility lifetime product.However,the high biases during photocurrent measurements tend to cause severe ion migration,which can lead to the instability and inaccuracy of the test results.Given the mixed electronic-ionic charac teristics,it is imperative to devise novel methods capable of precisely measuring photocurrentvoltage characteristics under high bias conditions,free from interference caused by ion migration.In this paper,pulsed bias is employed to explore the photocurrent-voltage characteristics of MAPbBr_(3) single crystals.The method yields stable photocurrent-voltage characteristics at a pulsed bias of up to 30 V,proving to be effective in mitigating ion migration.Through fitting the modified Hecht equation,we determined the mobility lifetime products of 1.0×10^(2) cm^(2)·V^(-1)for hole and 2.78×10~(-3)cm^(2)·V^(-1)for electron.This approach offers a promising solution for accurately measuring the transport properties of carriers in perovskite. 展开更多
关键词 perovskites ion migration pulsed bias mobility lifetime product
原文传递
Mode characteristics of VCSELs with different shape and size oxidation apertures
10
作者 谢新宇 李健 +3 位作者 邱小浪 王永丽 李川川 韦欣 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期347-351,共5页
Vertical cavity surface emitting laser(VCSELs)as the ideal light source for rubidium(Rb)and cesium(Cs)atomic clocks is analyzed for its mode and polarization control.We fabricated three kinds of shapes:triangular,elli... Vertical cavity surface emitting laser(VCSELs)as the ideal light source for rubidium(Rb)and cesium(Cs)atomic clocks is analyzed for its mode and polarization control.We fabricated three kinds of shapes:triangular,elliptic,and circular oxidation apertures which also have different sizes.We formed three different shape oxide apertures by wetoxidation with 36μm-39μm circular mesa.Our results show that triangular oxidized-VCSEL has the advantages of mode and polarization selection over elliptic and circular oxide apertures.When triangular oxide-confined VCSELs emit in single mode,the measured side mode suppression ratio(SMSR)is larger than 20 d B and orthogonal polarization suppression ratio achieves 10 d B.Resonant blueshift of VCSELs with triangular and elliptic apertures is observed with the decrease of aperture size. 展开更多
关键词 semiconductor lasers laser diodes microcavity and microdisk lasers semiconductor-device characterization design modeling
原文传递
Propagation and focusing characteristics of the Bessel-Gaussian beam with the spiral phase term of new power-exponent-phase
11
作者 王傲天 於亮红 +1 位作者 李进峰 梁晓燕 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期311-318,共8页
A new type of beam called the NPEP-BG(a Bessel-Gaussian(BG)beam with a spiral phase term of a new powerexponent-phase(NPEP))is theoretically studied in this paper.The results show that the number of singularities of t... A new type of beam called the NPEP-BG(a Bessel-Gaussian(BG)beam with a spiral phase term of a new powerexponent-phase(NPEP))is theoretically studied in this paper.The results show that the number of singularities of the phase and side lobes of the intensity of this beam were equal to the topological charges(TCs)and the beam has the characteristics of self-healing during propagation.The NPEP-BG beam combined the partial characteristics of the new power-exponentphase vortex(NPEPV)and the Bessel-Gaussian beam.At the focus of the beam,the characteristic like a perfect vortex beam was present,in which the focal radius is stable and independent of the topological charge.There are multi-focal spots around a ring in the focal plane,meaning that the NPEP-BG beam has a potential for application in multi-particle manipulation. 展开更多
关键词 vortex new-power-exponential-phase Bessel-Gaussian beam focus
原文传递
Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting
12
作者 Juncheng Wu Zhe‐Fan Wang +7 位作者 Taotao Guan Guoli Zhang Juan Zhang Jie Han Shengqin Guan Ning Wang Jianlong Wang Kaixi Li 《Carbon Energy》 SCIE CSCD 2023年第3期112-125,共14页
Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of... Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of TMPs.Herein,a novel method for synthesizing CoP nanoparticles encapsu-lated in a rich-defect carbon shell(CoP/DCS)is developed through the self-assembly of modified polycyclic aromatic molecules.The graft and removal of high-activity C-N bonds of aromatic molecules render the controllable design of crystallite defects of carbon shell.The density functional theory calculation indicates that the carbon defects with unpaired electrons could effectively tailor the band structure of CoP.Benefiting from the improved activity and corrosion resistance,the CoP/DCS delivers outstanding difunctional hydrogen evolution reaction(88 mV)and oxygen evolution reaction(251 mV)performances at 10 mA cm^(−2)current density.Furthermore,the coupled water electrolyzer with CoP/DCS as both the cathode and anode presents ultralow cell voltages of 1.49 V to achieve 10 mA cm^(−2)with long-time stability.This strategy to improve TMPs electrocatalyst with rich-DCS and heterogeneous structure will inspire the design of other transition metal compound electrocatalysts for water splitting. 展开更多
关键词 band structure bifunctional electrocatalysts CoP nanoparticles overall water splitting rich‐defect carbon
下载PDF
Gate-controlled localization to delocalization transition of flat band wavefunction in twisted monolayer–bilayer graphene
13
作者 李思宇 王政文 +5 位作者 薛禹承 曹路 Kenji Watanabe Takashi Taniguchi 高鸿钧 毛金海 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期102-105,共4页
Twisted graphene systems with flat bands have attracted much attention for they are excellent platforms to research novel quantum phases. Recently, transport measurements about twisted monolayer–bilayer graphene(t MB... Twisted graphene systems with flat bands have attracted much attention for they are excellent platforms to research novel quantum phases. Recently, transport measurements about twisted monolayer–bilayer graphene(t MBG) have shown the existence of correlated states and topological states in this system. However, the direct observations of the band structures and the corresponding spatial distributions are still not sufficient. Here we show that the distributions of flat bands in t MBG host two different modes by scanning tunneling microscopy and spectroscopy(STM/S). By tuning our t MBG device from the empty filling state to the full filling state through the back gate, we observe that the distributions of two flat bands develop from localized mode to delocalized mode. This gate-controlled flat band wavefunction polarization is unique to the t MBG system. Our work suggests that t MBG is promising to simulate both twisted bilayer graphene(TBG) and twisted double bilayer graphene(t DBG) and would be an ideal platform to explore novel moiré physics. 展开更多
关键词 graphene Van der Waals heterostructures scanning tunneling microscopy/spectroscopy
原文传递
An in-depth understanding of photophysics in organic photocatalysts
14
作者 Mengmeng Ma Zhijie Wang Yong Lei 《Journal of Semiconductors》 EI CAS CSCD 2023年第3期9-12,共4页
The urgent need to replace conventional fossil fuels with clean energy has stimulated a large number of research efforts on photocatalytic hydrogen evolution[1−4].Alternatively,organic semiconductors with tunable ligh... The urgent need to replace conventional fossil fuels with clean energy has stimulated a large number of research efforts on photocatalytic hydrogen evolution[1−4].Alternatively,organic semiconductors with tunable light absorption,well-positioned band edges,and excellent charge separation are highly expected[5−8].Conventionally,a semiconductor material with a wide band gap has a larger exciton binding energy,while a semiconductor material with a narrow band gap has a smaller exciton binding energy[9].Since smaller exciton binding energies are favorable for exciton separation,choosing a semiconductor with a suitable bandgap seems to be the first step toward high solar-to-hydrogen efficiency.The tunable light-harvesting ability determines the advantage and potential of organic semiconductors as photocatalysts.However,the insufficient external quantum efficiency(EQE)and the un-derlying photophysical mechanism remain restricting the orientation toward industrialization[10]. 展开更多
关键词 SEPARATION SEMICONDUCTORS replace
下载PDF
Acetic acid-assisted mild dealloying of fine CuPd nanoalloys achieving compressive strain toward high-efficiency oxygen reduction and ethanol oxidation electrocatalysis
15
作者 Danye Liu Yu Zhang +5 位作者 Hui Liu Peng Rao Lin Xu Dong Chen Xinlong Tian Jun Yang 《Carbon Energy》 SCIE CSCD 2023年第7期112-120,共9页
Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Here... Dealloying by which the transition metal is partially or completely leached from an alloy precursor is an effective way to optimize the fundamental effects for further enhancing the electrocatalysis of a catalyst.Herein,to address the deficiencies associated with the commonly used dealloying methods,for example,electrochemical and sulfuric acid/nitric acid treatment,we report an acetic acid-assisted mild strategy to dealloy Cu atoms from the outer surface layers of CuPd alloy nanoparticles to achieve high-efficiency electrocatalysis for oxygen reduction and ethanol oxidation in an alkaline electrolyte.The leaching of Cu atoms by acetic acid exerts an additional compressive strain effect on the surface layers and exposes more active Pd atoms,which is beneficial for boosting the catalytic performance of a dealloyed catalyst for the oxygen reduction reaction(ORR)and the ethanol oxidation reaction(EOR).In particular,for ORR,the CuPd nanoparticles with a Pd/Cu molar ratio of 2:1 after acetic dealloying show a half-wave potential of 0.912 V(vs.RHE)and a mass activity of 0.213 AmgPd^(-1) at 0.9 V,respectively,while for EOR,the same dealloyed sample has a mass activity and a specific activity of 8.4 Amg^(-1) and 8.23 mA cm^(-2),respectively,much better than their dealloyed counterparts at other temperatures and commercial Pd/C as well as a Pt/C catalyst. 展开更多
关键词 compressive strain effect DEALLOYING ELECTROCATALYSIS ethanol oxidation reaction oxygen reduction reaction
下载PDF
Ultralow Interfacial Thermal Resistance of Graphene Thermal Interface Materials with Surface Metal Liquefaction
16
作者 Wen Dai Xing-Jie Ren +13 位作者 Qingwei Yan Shengding Wang Mingyang Yang Le Lv Junfeng Ying Lu Chen Peidi Tao Liwen Sun Chen Xue Jinhong Yu Chengyi Song Kazuhito Nishimura Nan Jiang Cheng-Te Lin 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第1期183-196,共14页
Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of hi... Developing advanced thermal interface materials(TIMs)to bridge heat-generating chip and heat sink for constructing an efficient heat transfer interface is the key technology to solve the thermal management issue of high-power semiconductor devices.Based on the ultra-high basal-plane thermal conductivity,graphene is an ideal candidate for preparing high-performance TIMs,preferably to form a vertically aligned structure so that the basal-plane of graphene is consistent with the heat transfer direction of TIM.However,the actual interfacial heat transfer efficiency of currently reported vertically aligned graphene TIMs is far from satisfactory.In addition to the fact that the thermal conductivity of the vertically aligned TIMs can be further improved,another critical factor is the limited actual contact area leading to relatively high contact thermal resistance(20-30 K mm^(2) W^(−1))of the“solid-solid”mating interface formed by the vertical graphene and the rough chip/heat sink.To solve this common problem faced by vertically aligned graphene,in this work,we combined mechanical orientation and surface modification strategy to construct a three-tiered TIM composed of mainly vertically aligned graphene in the middle and micrometer-thick liquid metal as a cap layer on upper and lower surfaces.Based on rational graphene orientation regulation in the middle tier,the resultant graphene-based TIM exhibited an ultra-high thermal conductivity of 176 W m^(−1) K^(−1).Additionally,we demonstrated that the liquid metal cap layer in contact with the chip/heat sink forms a“liquid-solid”mating interface,significantly increasing the effective heat transfer area and giving a low contact thermal con-ductivity of 4-6 K mm^(2) W^(−1) under packaging conditions.This finding provides valuable guidance for the design of high-performance TIMs based on two-dimensional materials and improves the possibility of their practical application in electronic thermal management. 展开更多
关键词 Vertically aligned graphene Liquid metal Surface modification Thermal interface materials
下载PDF
State-of-the-art advances in vacancy defect engineering of graphitic carbon nitride for solar water splitting
17
作者 Jie Li Kaige Huang +11 位作者 Yanbin Huang Yumin Ye Marcin Ziółek Zhijie Wang Shizhong Yue Mengmeng Ma Jun Liu Kong Liu Shengchun Qu Zhi Zhao Yanjun Zhang Zhanguo Wang 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期16-34,共19页
Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride... Developing low-cost,efficient,and stable photocatalysts is one of the most promising methods for large-scale solar water splitting.As a metal-free semiconductor material with suitable band gap,graphitic carbon nitride(g-C_(3)N_(4))has attracted attention in the field of photocatalysis,which is mainly attributed to its fascinating physicochemical and photoelectronic properties.However,several inherent limitations and shortcomings—involving high recombination rate of photocarriers,insufficient reaction kinetics,and optical absorption—impede the practical applicability of g-C_(3)N_(4).As an effective strategy,vacancy defect engineering has been widely used for breaking through the current limitations,considering its ability to optimize the electronic structure and surface morphology of g-C_(3)N_(4) to obtain the desired photocatalytic activity.This review summarizes the recent progress of vacancy defect engineered g-C_(3)N_(4) for solar water splitting.The fundamentals of solar water splitting with g-C_(3)N_(4) are discussed first.We then focus on the fabrication strategies and effect of vacancy generated in g-C_(3)N_(4).The advances of vacancy-modified g-C_(3)N_(4) photocatalysts toward solar water splitting are discussed next.Finally,the current challenges and future opportunities of vacancy-modified g-C_(3)N_(4) are summarized.This review aims to provide a theoretical basis and guidance for future research on the design and development of highly efficient defective g-C_(3)N_(4). 展开更多
关键词 g-C_(3)N_(4) vacancy defect water splitting PHOTOCATALYST charge carrier
下载PDF
Optical and electrical properties of two-dimensional anisotropic materials 被引量:9
18
作者 Ziqi Zhou Yu Cui +2 位作者 Ping-Heng Tan Xuelu Liu Zhongming Wei 《Journal of Semiconductors》 EI CAS CSCD 2019年第6期7-17,共11页
Two-dimensional(2D) anisotropic materials, such as B-P, B-As, GeSe, GeAs, ReSe2, KP15 and their hybrid systems, exhibit unique crystal structures and extraordinary anisotropy. This review presents a comprehensive comp... Two-dimensional(2D) anisotropic materials, such as B-P, B-As, GeSe, GeAs, ReSe2, KP15 and their hybrid systems, exhibit unique crystal structures and extraordinary anisotropy. This review presents a comprehensive comparison of various 2D anisotropic crystals as well as relevant FETs and photodetectors, especially on their particular anisotropy in optical and electrical properties. First, the structure of typical 2D anisotropic crystal as well as the analysis of structural anisotropy is provided. Then, recent researches on anisotropic Raman spectra are reviewed. Particularly, a brief measurement principle of Raman spectra under three typical polarized measurement configurations is introduced. Finally, recent progress on the electrical and photoelectrical properties of FETs and polarization-sensitive photodetectors based on 2D anisotropic materials is summarized for the comparison between different 2D anisotropic materials. Beyond the high response speed, sensitivity and on/off ratio, these 2D anisotropic crystals exhibit highly conduction ratio and dichroic ratio which can be applied in terms of polarization sensors, polarization spectroscopy imaging, optical radar and remote sensing. 展开更多
关键词 TWO-DIMENSIONAL ANISOTROPIC RAMAN SPECTRA polarization-sensitive PHOTODETECTORS
下载PDF
Crystal growth of CeMn_(0.85)Sb_(2):Absence of magnetic order of Ce-sublattice
19
作者 李勇 苗杉杉 +2 位作者 冯海 杨槐馨 石友国 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期569-575,共7页
Single crystals of CeMn_(0.85)Sb_(2) have been successfully synthesized by using the Bi as flux.Analysis of single crystal x-ray diffraction data confirms that CeMn_(0.85)Sb_(2) crystallizes in the HfCuSi_(2)-type str... Single crystals of CeMn_(0.85)Sb_(2) have been successfully synthesized by using the Bi as flux.Analysis of single crystal x-ray diffraction data confirms that CeMn_(0.85)Sb_(2) crystallizes in the HfCuSi_(2)-type structure with the space group P4/nmm(No.129).In the case of H‖c,CeMn_(0.85)Sb_(2) displays a robust antiferromagnetic transition at~160 K for Mn-sublattice,and there is no sign of magnetic order regarding Ce-sublattice.In the case of the Mn-sublattice shows signs of magnetic order at 160 K and 116 K,indicating a possible spin reorientation.There is no sign of magnetic order for the Cesublattice either,but,alternating current magnetic susceptibility measurements reveal a spin glass state below 18 K in the case of H⊥c.Isothermal magnetization curves measured below magnetic order with H⊥c show saturation and even large hysteresis at 2 K,indicating the presence of a ferromagnetic component.In addition,a field-induced spin-flop transition is observed in the case of H⊥c,indicating a field-induced spin reorientation of Mn spins.Electrical resistivity measurements indicate a metallic nature for CeMn_(0.85)Sb_(2) and large anisotropy which is consistent with its quasi-two-dimensional layered structure. 展开更多
关键词 CeMn_(0.85)Sb_(2) MAGNETISM spin glass layered structure square lattice
原文传递
Droplet microfluidic chip for precise monitoring of dynamic solution changes
20
作者 Cong Ma Zehang Gao +1 位作者 Jianlong Zhao Shilun Feng 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2023年第3期55-63,共9页
In this work,an automated microfluidic chip that uses negative pressure to sample and analyze solutions with high temporal resolution was developed.The chip has a T-shaped channel for mixing the sample with a fluoresc... In this work,an automated microfluidic chip that uses negative pressure to sample and analyze solutions with high temporal resolution was developed.The chip has a T-shaped channel for mixing the sample with a fluorescent indicator,a flow-focusing channel for generating droplets in oil,and a long storage channel for incubating and detecting the droplets.By monitoring the fluorescence intensity of the droplets,the device could detect changes in solution accurately over time.The chip can generate droplets at frequencies of up to 42 Hz with a mixing ratio of 1:1 and a temporal resolution of 3–6 s.It had excellent linearity in detecting fluorescein solution in the concentration range 1–5μM.This droplet microfluidic chip provides several advantages over traditional methods,including high temporal resolution,stable droplet generation,and faster flow rates.This approach could be applied to monitoring calcium ions with a dynamic range from 102 to 107 nM and a detection limit of 10 nM. 展开更多
关键词 Microfluidic chip Droplet sampling Fluorescence detection Calcium ion dynamics Temporal resolution
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部