期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
Plasma-electrified up-carbonization for low-carbon clean energy 被引量:6
1
作者 Rusen Zhou Yadong Zhao +5 位作者 Renwu Zhou Tianqi Zhang Patrick Cullen Yao Zheng Liming Dai Kostya(Ken)Ostrikov 《Carbon Energy》 SCIE CAS CSCD 2023年第1期25-70,共46页
Low-value,renewable,carbon-rich resources,with different biomass feedstocks and their derivatives as typical examples,represent virtually inexhaustive carbon sources and carbon-related energy on Earth.Upon conversion ... Low-value,renewable,carbon-rich resources,with different biomass feedstocks and their derivatives as typical examples,represent virtually inexhaustive carbon sources and carbon-related energy on Earth.Upon conversion to higher-value forms(referred to as“up-carbonization”here),these abundant feedstocks provide viable opportunities for energy-rich fuels and sustainable platform chemicals production.However,many of the current methods for such up-carbonization still lack sufficient energy,cost,and material efficiency,which affect their economics and carbon-emissions footprint.With external electricity precisely delivered,discharge plasmas enable many stubborn reactions to occur under mild conditions,by creating locally intensified and highly reactive environments.This technology emerges as a novel,versatile technology platform for integrated or stand-alone conversion of carbon-rich resources.The plasma-based processes are compatible for integration with increasingly abundant and cost-effective renewable electricity,making the whole conversion carbon-neutral and further paving the plasma-electrified upcarbonization to be performance-,environment-,and economics-viable.Despite the chief interest in this emerging area,no review article brings together the state-of-the-art results from diverse disciplines and underlies basic mechanisms and chemistry underpinned.As such,this review aims to fill this gap and provide basic guidelines for future research and transformation,by providing an overview of the application of plasma techniques for carbon-rich resource conversion,with particular focus on the perspective of discharge plasmas,the fundamentals of why plasmas are particularly suited for upcarbonization,and featured examples of plasma-enabled resource valorization.With parallels drawn and specificity highlighted,we also discuss the technique shortcomings,current challenges,and research needs for future work. 展开更多
关键词 carbon-rich resources discharge plasmas low-carbon energy power-to-X process electrification
下载PDF
Engineering Strategies for Suppressing the Shuttle Effect in Lithium–Sulfur Batteries 被引量:2
2
作者 Jiayi Li Li Gao +7 位作者 Fengying Pan Cheng Gong Limeng Sun Hong Gao Jinqiang Zhang Yufei Zhao Guoxiu Wang Hao Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期187-221,共35页
Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-elect... Lithium–sulfur(Li–S)batteries are supposed to be one of the most potential next-generation batteries owing to their high theoretical capacity and low cost.Nevertheless,the shuttle effect of firm multi-step two-electron reaction between sulfur and lithium in liquid electrolyte makes the capacity much smaller than the theoretical value.Many methods were proposed for inhibiting the shuttle effect of polysulfide,improving corresponding redox kinetics and enhancing the integral performance of Li–S batteries.Here,we will comprehensively and systematically summarize the strategies for inhibiting the shuttle effect from all components of Li–S batteries.First,the electrochemical principles/mechanism and origin of the shuttle effect are described in detail.Moreover,the efficient strategies,including boosting the sulfur conversion rate of sulfur,confining sulfur or lithium polysulfides(LPS)within cathode host,confining LPS in the shield layer,and preventing LPS from contacting the anode,will be discussed to suppress the shuttle effect.Then,recent advances in inhibition of shuttle effect in cathode,electrolyte,separator,and anode with the aforementioned strategies have been summarized to direct the further design of efficient materials for Li–S batteries.Finally,we present prospects for inhibition of the LPS shuttle and potential development directions in Li–S batteries. 展开更多
关键词 Shuttle effect Designed strategies Li-S battery Lithium polysulfides
下载PDF
The effect of salt anion in ether‐based electrolyte for electrochemical performance of sodium‐ion batteries:A case study of hard carbon
3
作者 Jiabao Li Jingjing Hao +6 位作者 Quan Yuan Ruoxing Wang Frederick Marlton Tianyi Wang Chengyin Wang Xin Guo Guoxiu Wang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期285-297,共13页
Compared with the extensively used ester‐based electrolyte,the hard carbon(HC)electrode is more compatible with the ether‐based counterpart in sodium‐ion batteries,which can lead to improved cycling stability and r... Compared with the extensively used ester‐based electrolyte,the hard carbon(HC)electrode is more compatible with the ether‐based counterpart in sodium‐ion batteries,which can lead to improved cycling stability and robust rate capability.However,the impact of salt anion on the electrochemical performance of HC electrodes has yet to be fully understood.In this study,the anionic chemistry in regulating the stability of electrolytes and the performance of sodium‐ion batteries have been systematically investigated.This work shows discrepancies in the reductive stability of the anionic group,redox kinetics,and component/structure of solid electrolyte interface(SEI)with different salts(NaBF_(4),NaPF_(6),and NaSO_(3)CF_(3))in the typical ether solvent(diglyme).Particularly,the density functional theory calculation manifests the preferred decomposition of PF_(6)−due to the reduced reductive stability of anions in the solvation structure,thus leading to the formation of NaF‐rich SEI.Further investigation on redox kinetics reveals that the NaPF_(6)/diglyme can induce the fast ionic diffusion dynamic and low charge transfer barrier for HC electrode,thus resulting in superior sodium storage performance in terms of rate capability and cycling life,which outperforms those of NaBF_(4)/diglyme and NaSO_(3)CF_(3)/diglyme.Importantly,this work offers valuable insights for optimizing the electrochemical behaviors of electrode materials by regulating the anionic group in the electrolyte. 展开更多
关键词 ether‐based electrolyte reaction kinetics salt anion SEI components sodium storage
下载PDF
Yttrium‐and nitrogen‐doped NiCo phosphide nanosheets for high‐efficiency water electrolysis
4
作者 Guangliang Chen Huiyang Xiang +5 位作者 Yingchun Guo Jun Huang Wei Chen Zhuoyi Chen Tongtong Li Kostya(Ken)Ostrikov 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期214-231,共18页
Engineering high‐performance and low‐cost bifunctional catalysts for H_(2)(hydrogen evolution reaction[HER])and O_(2)(oxygen evolution reaction[OER])evolution under industrial electrocatalytic conditions remains cha... Engineering high‐performance and low‐cost bifunctional catalysts for H_(2)(hydrogen evolution reaction[HER])and O_(2)(oxygen evolution reaction[OER])evolution under industrial electrocatalytic conditions remains challenging.Here,for the first time,we use the stronger electronegativity of a rare‐Earth yttrium ion(Y^(3+))to induce in situ NiCo‐layered double‐hydroxide nanosheets from NiCo foam(NCF)treated by a dielectric barrier discharge plasma NCF(PNCF),and then obtain nitrogen‐doped YNiCo phosphide(N‐YNiCoP/PNCF)after the phosphating process using radiofrequency plasma in nitrogen.The obtained NYNiCoP/PNCF has a large specific surface area,rich heterointerfaces,and an optimized electronic structure,inducing high electrocatalytic activity in HER(331mV vs.2000mA cm^(−2))and OER(464mV vs.2000mA cm^(−2))reactions in 1MKOH electrolyte.X‐ray absorption spectroscopy and density functional theory quantum chemistry calculations reveal that the coordination number of CoNi decreased with the incorporation of Y atoms,which induce much shorter bonds of Ni and Co ions and promote long‐term stability of N‐YNiCoP in HER and OER under the simulated industrial conditions.Meanwhile,the CoN‐YP_(5) heterointerface formed by plasma N‐doping is the active center for overall water splitting.This work expands the applications of rare‐Earth elements in engineering bifunctional electrocatalysts and provides a new avenue for designing highperformance transition‐metal‐based catalysts in the renewable energy field. 展开更多
关键词 overall water splitting plasma etching plasma N‐doping rare‐earth electrocatalyst yttrium incorporation
下载PDF
High valence metals engineering strategies of Fe/Co/Ni-based catalysts for boosted OER electrocatalysis 被引量:6
5
作者 Lu Li Xianjun Cao +6 位作者 Juanjuan Huo Junpeng Qu Weihua Chen Chuntai Liu Yufei Zhao Hao Liu Guoxiu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期195-213,I0006,共20页
Electrocatalysis for the oxygen evolution reactions(OER)has attracted much attention due to its important role in water splitting and rechargeable metal-air batteries.Therefore,designing highly efficient and low-cost ... Electrocatalysis for the oxygen evolution reactions(OER)has attracted much attention due to its important role in water splitting and rechargeable metal-air batteries.Therefore,designing highly efficient and low-cost catalysts for OER process is essential as the conventional catalysts still rely on precious metals.Transition metal-based compounds have been widely investigated as active OER catalysts,and renewed interest in the high valence metals engineered compounds has been achieved for superior catalytic activity and stability.However,an in-depth understanding of the construction strategies and induced effects for the high valence metals engineered catalysts is still lacking and desired.In this review,we have summarized the construction strategies of high valence metals as dopants or formed heterostructures with the iron/cobalt/nickel(Fe/Co/Ni)-based catalysts.Then the induced effects on Fe/Co/Ni-based catalysts by incorporating high valence metals,e.g.,accelerating the surface reconstruction,forming amorphous structure,generating vacancies/defects,and acting as stabilizers,are highlighted.The impacts of high valence metals on OER performance are elucidated based on different elements,including molybdenum(Mo),tungsten(W),cerium(Ce),vanadium(V),chromium(Cr),manganese(Mn),niobium(Nb),zirconium(Zr).The correlations of construction strategies,induced effects,catalytic activity and OER reaction pathways are elaborated.Finally,the remaining challenges for further enhancements of OER performance induced by high valence metals are presented. 展开更多
关键词 High valence metals Construction strategies Induced effect Oxygen evolution reactions
下载PDF
Designing Oxide Catalysts for Oxygen Electrocatalysis: Insights from Mechanism to Application 被引量:4
6
作者 Ning Han Wei Zhang +7 位作者 Wei Guo Hui Pan Bo Jiang Lingbao Xing Hao Tian Guoxiu Wang Xuan Zhang Jan Fransaer 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期514-546,共33页
The electrochemical oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal–air batteries. ORR and OER both hav... The electrochemical oxygen reduction reaction(ORR) and oxygen evolution reaction(OER) are fundamental processes in a range of energy conversion devices such as fuel cells and metal–air batteries. ORR and OER both have significant activation barriers, which severely limit the overall performance of energy conversion devices that utilize ORR/OER. Meanwhile, ORR is another very important electrochemical reaction involving oxygen that has been widely investigated. ORR occurs in aqueous solutions via two pathways: the direct 4-electron reduction or 2-electron reduction pathways from O_(2) to water(H_2O) or from O_(2) to hydrogen peroxide(H_2O_(2)). Noble metal electrocatalysts are often used to catalyze OER and ORR, despite the fact that noble metal electrocatalysts have certain intrinsic limitations, such as low storage. Thus, it is urgent to develop more active and stable low-cost electrocatalysts, especially for severe environments(e.g., acidic media). Theoretically, an ideal oxygen electrocatalyst should provide adequate binding to oxygen species. Transition metals not belonging to the platinum group metal-based oxides are a low-cost substance that could give a d orbital for oxygen species binding. As a result, transition metal oxides are regarded as a substitute for typical precious metal oxygen electrocatalysts. However, the development of oxide catalysts for oxygen reduction and oxygen evolution reactions still faces significant challenges, e.g., catalytic activity, stability, cost, and reaction mechanism. We discuss the fundamental principles underlying the design of oxide catalysts, including the influence of crystal structure, and electronic structure on their performance. We also discuss the challenges associated with developing oxide catalysts and the potential strategies to overcome these challenges. 展开更多
关键词 Oxygen evolution Oxygen reduction Oxide catalysts Catalyst design Fuel cell Metal–air batteries
下载PDF
Interface Engineering of Fe_(7)S_(8)/FeS_(2) Heterostructure in situ Encapsulated into Nitrogen‑Doped Carbon Nanotubes for High Power Sodium‑Ion Batteries 被引量:1
7
作者 Penghao Song Jian Yang +4 位作者 Chengyin Wang Tianyi Wang Hong Gao Guoxiu Wang Jiabao Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第8期167-180,共14页
Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics,improving electronic conductivity,and mitigating the huge expansion of transition metal sulfide e... Heterostructure engineering combined with carbonaceous materials shows great promise toward promoting sluggish kinetics,improving electronic conductivity,and mitigating the huge expansion of transition metal sulfide electrodes for high-performance sodium storage.Herein,the iron sulfide-based heterostructures in situ hybridized with nitrogen-doped carbon nanotubes(Fe_(7)S_(8)/FeS_(2)/NCNT)have been prepared through a successive pyrolysis and sulfidation approach.The Fe_(7)S_(8)/FeS_(2)/NCNT heterostructure delivered a high reversible capacity of 403.2 mAh g^(−1) up to 100 cycles at 1.0 A g^(−1) and superior rate capability(273.4 mAh g^(−1) at 20.0 A g^(−1))in ester-based electrolyte.Meanwhile,the electrodes also demonstrated long-term cycling stability(466.7 mAh g^(−1) after 1,000 cycles at 5.0 A g^(−1))and outstanding rate capability(536.5 mAh g^(−1) at 20.0 A g^(−1))in ether-based electrolyte.This outstanding performance could be mainly attributed to the fast sodium-ion diffusion kinetics,high capacitive contribution,and convenient interfacial dynamics in ether-based electrolyte. 展开更多
关键词 Iron sulfides HETEROSTRUCTURE Nitrogen-doped carbon nanotubes Ester-based electrolyte Ether-based electrolyte
下载PDF
Electrolyte Solvation Structure Design for High Voltage Zinc-Based Hybrid Batteries
8
作者 Pauline Jaumaux Shijian Wang +2 位作者 Shuoqing Zhao Bing Sun Guoxiu Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期239-247,共9页
Zinc(Zn)metal anodes have enticed substantial curiosity for large-scale energy storage owing to inherent safety,high specific and volumetric energy capacities of Zn metal anodes.However,the aqueous electrolyte traditi... Zinc(Zn)metal anodes have enticed substantial curiosity for large-scale energy storage owing to inherent safety,high specific and volumetric energy capacities of Zn metal anodes.However,the aqueous electrolyte traditionally employed in Zn batteries suffers severe decomposition due to the narrow voltage stability window.Herein,we introduce N-methylformamide(NMF)as an organic solvent and modulate the solvation structure to obtain a stable organic/aqueous hybrid electrolyte for high-voltage Zn batteries.NMF is not only extremely stable against Zn metal anodes but also reduces the free water molecule availability by creating numerous hydrogen bonds,thereby accommodating high-voltage Zn‖LiMn_(2)O_(4)batteries.The introduction of NMF prevented hydrogen evolution reaction and promoted the creation of an Frich solid electrolyte interphase,which in turn hampered dendrite growth on Zn anodes.The Zn‖LiMn_(2)O_(4)full cells delivered a high average Coulombic efficiency of 99.7%over 400 cycles. 展开更多
关键词 aqueous electrolytes electrolyte solvation structures high-voltage zinc batteries hybrid batteries
下载PDF
Surface engineering of P2-type cathode material targeting long-cycling and high-rate sodium-ion batteries
9
作者 Jun Xiao Yang Xiao +11 位作者 Shijian Wang Zefu Huang Jiayi Li Cheng Gong Guilai Zhang Bing Sun Hong Gao Huiqiao Li Xin Guo Yong Wang Hao Liu Guoxiu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期444-452,I0009,共10页
The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate per... The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode. 展开更多
关键词 Layered metal oxides Sodium-ion batteries P2-type structure Surface engineering
下载PDF
Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry 被引量:8
10
作者 Yang Li Wang Yang +6 位作者 Wu Yang Ziqi Wang Jianhua Rong Guoxiu Wang Chengjun Xu Feiyu Kang Liubing Dong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期268-283,共16页
Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and ant... Aqueous Zn-ion hybrid supercapacitors(ZHSs)are increasingly being studied as a novel electrochemical energy storage system with prominent electrochemical performance,high safety and low cost.Herein,high-energy and anti-self-discharge ZHSs are realized based on the fibrous carbon cathodes with hierarchically porous surface and O/N heteroatom functional groups.Hierarchically porous surface of the fabricated free-standing fibrous carbon cathodes not only provides abundant active sites for divalent ion storage,but also optimizes ion transport kinetics.Consequently,the cathodes show a high gravimetric capacity of 156 mAh g^(−1),superior rate capability(79 mAh g^(−1)with a very short charge/discharge time of 14 s)and exceptional cycling stability.Meanwhile,hierarchical pore structure and suitable surface functional groups of the cathodes endow ZHSs with a high energy density of 127 Wh kg−1,a high power density of 15.3 kW kg^(−1)and good anti-self-discharge performance.Mechanism investigation reveals that ZHS electrochemistry involves cation adsorption/desorption and Zn_(4)SO_(4)(OH)_(6)·5H_(2)O formation/dissolution at low voltage and anion adsorption/desorption at high voltage on carbon cathodes.The roles of these reactions in energy storage of ZHSs are elucidated.This work not only paves a way for high-performance cathode materials of ZHSs,but also provides a deeper understanding of ZHS electrochemistry. 展开更多
关键词 Zn-ion hybrid supercapacitor Carbon material Fibrous cathode Hierarchical pore structure HIGH-ENERGY
下载PDF
Flexible Conductive Anodes Based on 3D Hierarchical Sn/NS-CNFs@rGO Network for Sodium-Ion Batteries 被引量:7
11
作者 Linqu Luo Jianjun Song +6 位作者 Longfei Song Hongchao Zhang Yicheng Bi Lei Liu Longwei Yin Fengyun Wang Guoxiu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期133-146,共14页
Metallic Sn has provoked tremendous progress as an anode material for sodium-ion batteries(SIBs).However,Sn anodes suffer from a dramatic capacity fading,owing to pulverization induced by drastic volume expansion duri... Metallic Sn has provoked tremendous progress as an anode material for sodium-ion batteries(SIBs).However,Sn anodes suffer from a dramatic capacity fading,owing to pulverization induced by drastic volume expansion during cycling.Herein,a flexible three-dimensional(3D)hierarchical conductive network electrode is designed by constructing Sn quantum dots(QDs)encapsulated in one-dimensional N,S codoped carbon nanofibers(NS-CNFs)sheathed within two-dimensional(2D)reduced graphene oxide(rGO)scrolls.In this ingenious strategy,1D NS-CNFs are regarded as building blocks to prevent the aggregation and pulverization of Sn QDs during sodiation/desodiation,2D rGO acts as electrical roads and“bridges”among NS-CNFs to improve the conductivity of the electrode and enlarge the contact area with electrolyte.Because of the unique structural merits,the flexible 3D hierarchical conductive network was directly used as binder-and current collectorfree anode for SIBs,exhibiting ultra-long cycling life(373 mAh g?1 after 5000 cycles at 1 A g?1),and excellent high-rate capability(189 mAh g?1 at 10 A g?1).This work provides a facile and efficient engineering method to construct 3D hierarchical conductive electrodes for other flexible energy storage devices. 展开更多
关键词 FLEXIBLE electrodes N S CO-DOPED carbon nanofibers Reduced graphene oxide SN quantum DOTS Sodium-ion batteries
下载PDF
Oxygen redox chemistry in lithium-rich cathode materials for Li-ion batteries:Understanding from atomic structure to nano-engineering 被引量:4
12
作者 Majid Farahmandjou Shuoqing Zhao +3 位作者 Wei-Hong Lai Bing Sun Peter.H.L.Notten Guoxiu Wang 《Nano Materials Science》 EI CAS CSCD 2022年第4期322-338,共17页
Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries,owing to their high specific capacity.However,it remains a great challenge to achieve the fully re... Lithium-rich oxide compounds have been recognized as promising cathode materials for high performance Li-ion batteries,owing to their high specific capacity.However,it remains a great challenge to achieve the fully reversible anionic redox reactions to realize high capacity,high stability,and low voltage hysteresis for lithiumrich cathode materials.Therefore,it is critically important to comprehensively understand and control the anionic redox chemistry of lithium-rich cathode materials,including atomic structure design,and nano-scale materials engineering technologies.Herein,we summarize the recent research progress of lithium-rich cathode materials with a focus on redox chemistry.Particularly,we highlight the oxygen-based redox reactions in lithium-rich metal oxides,with critical views of designing next generation oxygen redox lithium cathode materials.Furthermore,we purposed the most promising strategies for improving the performances of lithium-rich cathode materials with a technology-spectrum from the atomic scale to nano-scale. 展开更多
关键词 Oxygen redox chemistry Lithium-rich cathode Li-ion batteries Atomic structure Nano-engineering
下载PDF
High-performance zinc-ion batteries enabled by electrochemically induced transformation of vanadium oxide cathodes 被引量:2
13
作者 Yang Li Wang Yang +5 位作者 Wu Yang Yongfeng Huang Guoxiu Wang Chengjun Xu Feiyu Kang Liubing Dong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期233-240,共8页
Rechargeable aqueous zinc-ion batteries(ZIBs) have become a research hotspot in recent years,due to their huge potential for high-energy,fast-rate,safe and low-cost energy storage.To realize good electrochemical prope... Rechargeable aqueous zinc-ion batteries(ZIBs) have become a research hotspot in recent years,due to their huge potential for high-energy,fast-rate,safe and low-cost energy storage.To realize good electrochemical properties of ZIBs,cathode materials with prominent Zn^(2+) storage capability are highly needed.Herein,we report a promising ZIB cathode material based on electrochemically induced transformation of vanadium oxides.Specifically,K_(2) V_6 O_(16)·1.5 H_(2) O nanofibers were synthesized through a simple stirring method at near room temperature and then used as cathode materials for ZIBs in different electrolytes.The cathode presented superior Zn^(2+) storage capability in Zn(OTf)_(2) aqueous electrolyte,including high capacity of 321 mAh/g,fast charge/discharge ability(96 mAh/g delivered in 35 s), high energy density of 235 Wh/kg and good cycling performance.Mechanism analysis evidenced that in Zn(OTf)_(2) electrolyte,Zn^(2+) intercalation in the first discharge process promoted K_(2) V_6 O_(16)·1.5 H_(2) O nanofibers to transform into Zn_(3+x)V_(2) O_7(OH)_(2)·2 H_(2) O nanoflakes,and the latter served as the Zn^(2+)-storage host in subsequent charge/discharge processes.Benefiting from open-framework crystal structure and sufficiently exposed surface,the Zn_(3+x)V_(2) O_7(OH)_(2)·2_H2 O nanoflakes exhibited high Zn^(2+) diffusion coefficient,smaller charge-transfer resistance and good reversibility of Zn^(2+) intercalation/de-intercalation,thus leading to superior electrochemical performance.While in ZnS04 aqueous electrolyte,the cathode material cannot sufficiently transform into Zn_(3+x)V_(2) O_7(OH)_(2)·2 H_(2) O thereby corresponding to inferior electrochemical behaviors.Underlying mechanism and influencing factors of such a transformation phenomenon was also explored.This work not only reports a high-performance ZIB cathode material based on electrochemically induced transformation of vanadium oxides,but also provides new insights into Zn^(2+)-storage electrochemistry. 展开更多
关键词 Zinc-ion battery Cathode material Vanadium oxide Electrochemically induced transformation
下载PDF
Recent advances in “water in salt” electrolytes for aqueous rechargeable monovalent-ion(Li^(+), Na^(+), K^(+)) batteries 被引量:2
14
作者 Hong Gao Kaikai Tang +4 位作者 Jun Xiao Xin Guo Weihua Chen Hao Liu Guoxiu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期84-99,I0003,共17页
Aqueous rechargeable batteries have attracted enormous attention owning to their intrinsic characteristics of non-flammability, low cost, and the superior ionic conductivity of the aqueous electrolyte.However, the nar... Aqueous rechargeable batteries have attracted enormous attention owning to their intrinsic characteristics of non-flammability, low cost, and the superior ionic conductivity of the aqueous electrolyte.However, the narrow electrochemical stability window(1.23 V), imposed by hydrogen and oxygen evolution, constrains the overall energy density of batteries. The revolutionary "water-in-salt” electrolytes considerably expand the electrochemical stability window to 3 or even 4 volts, giving rise to a new series of high-voltage aqueous metal-ion chemistries. Herein, the recent advances in "water-in-salt” electrolytes for aqueous monovalent-ion(Li^(+), Na^(+), K^(+)) rechargeable batteries have been systematically reviewed. Meanwhile, the corresponding reaction mechanisms, electrochemical performances and the existing challenges and opportunities are also highlighted. 展开更多
关键词 Aqueous batteries Concentrated electrolytes Water-in-salt Hybrid electrolytes Solid-electrolyte interface
下载PDF
Metal-organic-framework-derived formation of Co–N-doped carbon materials for efficient oxygen reduction reaction 被引量:3
15
作者 Hao Tian Chi Zhang +5 位作者 Panpan Su Zhangfeng Shen Hao Liu Guoxiu Wang Shaomin Liu Jian Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第1期137-143,I0005,共8页
Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion.Herein,we report the designed synthesis of a novel series of C... Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion.Herein,we report the designed synthesis of a novel series of Co-N-C nanocomposites and their evaluation of electrochemical properties.Novel yolkshell structured Co nanoparticles@polymer materials are fabricated from the facile coating polymer strategy on the surface of ZIF-67.After calcination in nitrogen atmosphere,the Co–N–C nanocomposites in which cobalt metal nanoparticles are embedded in the highly porous and graphitic carbon matrix are successfully achieved.The cobalt nanoparticles containing cobalt metal crystallites with an oxidized shell and/or smaller(or amorphous)cobalt-oxide deposits appear on the surface of graphitic carbons.The prepared Co–N–C nanoparticles showed favorable electrocatalytic activity for oxygen reduction reactions,which is attributed to its high graphitic degree,large surface area and the large amount existence of Co–N active sites. 展开更多
关键词 Metal-organic-framework Resin polymer Oxygen reduction reaction ELECTROCATALYSTS
下载PDF
Enhanced confinement synthesis of atomically dispersed Fe-N-C catalyst from resin polymer for oxygen reduction 被引量:1
16
作者 Ailing Song Hao Tian +5 位作者 Wang Yang Wu Yang Yuhan Xie Hao Liu Guoxiu Wang Guangjie Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期630-636,共7页
Due to larger atom utilization,unique electronic properties and unsaturated coordination,atomically dispersed non-precious metal catalysts with outstanding performances have received great attention in electrocatalysi... Due to larger atom utilization,unique electronic properties and unsaturated coordination,atomically dispersed non-precious metal catalysts with outstanding performances have received great attention in electrocatalysis.Considering the challenge of serious aggregation,rational synthesis of an atomic catalyst with good dispersion of atoms is paramount to the development of these catalysts.Herein,we report an enhanced confinement strategy to synthesize a catalyst comprised of atomically dispersed Fe supported on porous nitrogen-doped graphitic carbon from the novel and more cross-linkable Melamine-Glyoxal Resin.Densified isolated grid trapping,excessive melamine restricting,and nitrogen anchoring are strongly combined to ensure the final atomic-level dispersion of metal atoms.Experimental studies revealed enhanced kinetics of the obtained catalyst towards oxygen reduction reaction(ORR).This catalytic activity originates from the highly active surface with atomically dispersed iron sites as well as the multi-level three-dimensional structure with fast mass and electron transfer.The enhanced confinement strategy endows the resin-derived atomic catalyst with a great prospect to develop for commercialization in future. 展开更多
关键词 Non-precious metal catalysts Atomic catalyst Oxygen reduction reaction Confinement synthesis
下载PDF
Concrete-like high sulfur content cathodes with enhanced electrochemical performance for lithium-sulfur batteries
17
作者 Bolan Gan Kaikai Tang +6 位作者 Yali Chen Dandan Wang Na Wang Wenxian Li Yong Wang Hao Liu Guoxiu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第3期174-179,共6页
Nowadays,lithium-sulfur batteries have attracted numerous attention due to their high specific capacity,high energy density,low cost and environmental benignancy.However,there are some critical challenges to be overco... Nowadays,lithium-sulfur batteries have attracted numerous attention due to their high specific capacity,high energy density,low cost and environmental benignancy.However,there are some critical challenges to be overcome such as low electronic conductivity and capacity fading caused by shuttle effect.Many attempts have been conducted to improve the electrochemical performance by designing effective sulfur hosts.In this paper,we synthesize a concrete-like sulfur/carbon cathode with high sulfur content(84%)by using 3D macroporous hosts with high pore volume.Sophisticated strategies of using polarized carbon framework and polymer coating are applied to synergistically control the dissolution of polysulfides so that the capacity retention and high rate performance can be remarkably enhanced.As a result,the composite exhibits a specific discharge capacity of 820 mAhg-1at a discharge current of 800 mAg-1(approximate to 0.5 C)after 100 cycles,calculated on the integrated mass of composite,which is superior to most report results. 展开更多
关键词 Lithium-sulfur BATTERIES CATHODE Polymer coating N-DOPING
下载PDF
Electrochemical Carbon Dioxide Reduction to Ethylene:From Mechanistic Understanding to Catalyst Surface Engineering 被引量:4
18
作者 Junpeng Qu Xianjun Cao +7 位作者 Li Gao Jiayi Li Lu Li Yuhan Xie Yufei Zhao Jinqiang Zhang Minghong Wu Hao Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第10期382-415,共34页
Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides a promising way to convert CO_(2)to chemicals.The multicarbon(C_(2+))products,especially ethylene,are of great interest due to their versatile indust... Electrochemical carbon dioxide reduction reaction(CO_(2)RR)provides a promising way to convert CO_(2)to chemicals.The multicarbon(C_(2+))products,especially ethylene,are of great interest due to their versatile industrial applications.However,selectively reducing CO_(2)to ethylene is still challenging as the additional energy required for the C–C coupling step results in large overpotential and many competing products.Nonetheless,mechanistic understanding of the key steps and preferred reaction pathways/conditions,as well as rational design of novel catalysts for ethylene production have been regarded as promising approaches to achieving the highly efficient and selective CO_(2)RR.In this review,we first illustrate the key steps for CO_(2)RR to ethylene(e.g.,CO_(2)adsorption/activation,formation of~*CO intermediate,C–C coupling step),offering mechanistic understanding of CO_(2)RR conversion to ethylene.Then the alternative reaction pathways and conditions for the formation of ethylene and competitive products(C_1 and other C_(2+)products)are investigated,guiding the further design and development of preferred conditions for ethylene generation.Engineering strategies of Cu-based catalysts for CO_(2)RR-ethylene are further summarized,and the correlations of reaction mechanism/pathways,engineering strategies and selectivity are elaborated.Finally,major challenges and perspectives in the research area of CO_(2)RR are proposed for future development and practical applications. 展开更多
关键词 Key steps in CO_(2)RR-ethylene Preferable reaction pathways Mechanism understanding Surface engineering strategies of Cu-based catalysts
下载PDF
High‑Energy Room‑Temperature Sodium–Sulfur and Sodium–Selenium Batteries for Sustainable Energy Storage 被引量:1
19
作者 Zefu Huang Pauline Jaumaux +6 位作者 Bing Sun Xin Guo Dong Zhou Devaraj Shanmukaraj Michel Armand Teofilo Rojo Guoxiu Wang 《Electrochemical Energy Reviews》 SCIE EI CSCD 2023年第1期87-147,共61页
Rechargeable room-temperature sodium–sulfur(Na–S)and sodium–selenium(Na–Se)batteries are gaining extensive attention for potential large-scale energy storage applications owing to their low cost and high theoretic... Rechargeable room-temperature sodium–sulfur(Na–S)and sodium–selenium(Na–Se)batteries are gaining extensive attention for potential large-scale energy storage applications owing to their low cost and high theoretical energy density.Optimization of electrode materials and investigation of mechanisms are essential to achieve high energy density and long-term cycling stability of Na–S(Se)batteries.Herein,we provide a comprehensive review of the recent progress in Na–S(Se)batteries.We elucidate the Na storage mechanisms and improvement strategies for battery performance.In particular,we discuss the advances in the development of battery components,including high-performance sulfur cathodes,optimized electrolytes,advanced Na metal anodes and modified separators.Combined with current research achievements,this review outlines remaining challenges and clear research directions for the future development of practical high-performance Na–S(Se)batteries. 展开更多
关键词 Sodium-sulfur batteries Sodium-selenium batteries Sulfur cathodes Electrolyte engineering Solid-state electrolytes Sodium metal anodes
下载PDF
Achieving high-performance sodium metal anodes: From structural design to reaction kinetic improvement 被引量:1
20
作者 Jing Xu Jianhao Yang +4 位作者 Yashuang Qiu Yang Jin Tianyi Wang Bing Sun Guoxiu Wang 《Nano Research》 SCIE EI CSCD 2024年第3期1288-1312,共25页
Sodium metal is one of the ideal anodes for high-performance rechargeable batteries because of its high specific capacity(~1166 mAh·g^(-1)),low reduction potential(-2.71 V compared to standard hydrogen electrodes... Sodium metal is one of the ideal anodes for high-performance rechargeable batteries because of its high specific capacity(~1166 mAh·g^(-1)),low reduction potential(-2.71 V compared to standard hydrogen electrodes),and low cost.However,the unstable solid electrolyte interphase,uncontrolled dendrite growth,and inevitable volume expansion hinder the practical application of sodium metal anodes.At present,many strategies have been developed to achieve stable sodium metal anodes.Here,we systematically summarize the latest strategies adopted in interface engineering,current collector design,and the emerging methods to improve the reaction kinetics of sodium deposition processes.First,the strategies of constructing protective layers are reviewed,including inorganic,organic,and mixed protective layers through electrolyte additives or pretreatments.Then,the classification of metal-based,carbon-based,and composite porous frames is discussed,including their function in reducing local deposition current density and the effect of introducing sodiophilic sites.Third,the recent progress of alloys,nanoparticles,and single atoms in improving Na deposition kinetics is systematically reviewed.Finally,the future research direction and the prospect of high-performance sodium metal batteries are proposed. 展开更多
关键词 sodium metal anodes interface engineering current collector design reaction kinetics sodium deposition processes
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部