期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Constitutive Model of Friction Stir Weld with Consideration of its Inhomogeneous Mechanical Properties 被引量:3
1
作者 ZHANG Ling MIN Junying +3 位作者 WANG Bin LIN Jianping LI Fangfang LIU Jing 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期357-364,共8页
In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis... In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming. 展开更多
关键词 constitutive model inhomogeneous mechanical property friction stir welding tailor welded blanks
下载PDF
Prediction of plane-strain specimen geometry to efficiently obtain a forming limit diagram by Marciniak test 被引量:1
2
作者 Qing-bao Yang Jun-ying Min +4 位作者 John E. Carsley Yuan-yuan Wen Bernd Kuhlenkotter Thomas B. Stoughton Jian-ping Lin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第5期539-545,共7页
Plane-strain forming limit strain (also known as FLD0) is an important data point on a forming limit diagram (FLD). The effects of friction coefficients and material parameters on the specimen width associated wit... Plane-strain forming limit strain (also known as FLD0) is an important data point on a forming limit diagram (FLD). The effects of friction coefficients and material parameters on the specimen width associated with the FLDo (W FLD0) in Marciniak test were studied by finite element simulation. WFLD0 was expressed as a function of the Lankford coefficients, n-value, k-value and sheet thickness and validated with various sheet materials. The determination of W FLD0 is of significance not only to reduce iterative attempts to accurately obtain FLDo, but also to obtain a full valid FLD with the least number of test specimens, which largely increases the efficiency and reduces cost to experimentally measure valid FLDs. 展开更多
关键词 Forming limit test ·Sheet metal· Plane-strain state· Marciniak test
原文传递
Prediction and Experimental Validation of Forming Limit Curve of a Quenched and Partitioned Steel 被引量:1
3
作者 Xue-li GAO Jun-ying MIN +3 位作者 Ling ZHANG Quan-chao LI Chang-wei LIAN Jian-ping LIN 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第6期580-585,共6页
Forming limit curve(FLC)is an effective tool to evaluate the formability of sheet metals.An accurate FLC prediction for a sheet metal is beneficial to its engineering application.A quenched and partitioned steel,kno... Forming limit curve(FLC)is an effective tool to evaluate the formability of sheet metals.An accurate FLC prediction for a sheet metal is beneficial to its engineering application.A quenched and partitioned steel,known as QP980,is one of the 3rd generation advanced high strength steels and is composed of martensite,ferrite and a considerable amount of retained austenite(RA).Martensite transformation from RA induced by deformation,namely,transformation induced plasticity(TRIP),promotes the capability of work hardening and consequently formability.Nakazima tests were carried out to obtain the experimental forming limit strains with the aid of digital image correlation techniques.Scanning electron microscopy(SEM)was employed to examine the fracture morphologies of Nakazima specimens of the QP980 steel.The observed dimple pattern indicated that tensile stress was the predominant factor which led to failure of QP980 specimens.Therefore,maximum tensile stress criterion(MTSC)was adopted as the forming limit criterion.To predict the FLC of QP980 steel,Von-Mises yield criterion and power hardening law were adopted according to the tested mechanical properties of QP980 steel.Results were compared with those derived from other three representative instability theories,e.g.Hill criterion,Storen-Rice vertex theory and Bressan-Williams model,which shows that the MTSC based FLC is in better agreement with the experimental results. 展开更多
关键词 criterion tensile martensite hardening plasticity TRIP austenite steels ferrite quenched
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部