In this paper, a systematic review of non-probabilistic reliability metrics is conducted to assist the selection of appropriate reliability metrics to model the influence of epistemic uncertainty. Five frequently used...In this paper, a systematic review of non-probabilistic reliability metrics is conducted to assist the selection of appropriate reliability metrics to model the influence of epistemic uncertainty. Five frequently used non-probabilistic reliability metrics are critically reviewed, i.e., evidence- theory-based reliability metrics, interval-analysis-based reliability metrics, fuzzy-interval-analysis- based reliability metrics, possibility-theory-based reliability metrics (posbist reliability) and uncertainty-theory-based reliability metrics (belief reliability). It is pointed out that a qualified reli- ability metric that is able to consider the effect of epistemic uncertainty needs to ( 1 ) compensate the conservatism in the estimations of the component-level reliability metrics caused by epistemic uncertainty, and (2) satisfy the duality axiom, otherwise it might lead to paradoxical and confusing results in engineering applications. The five commonly used non-probabilistic reliability metrics are compared in terms of these two properties, and the comparison can serve as a basis for the selection of the appropriate reliability metrics.展开更多
基金supported by National Natural Science Foundation of China(No.61573043)
文摘In this paper, a systematic review of non-probabilistic reliability metrics is conducted to assist the selection of appropriate reliability metrics to model the influence of epistemic uncertainty. Five frequently used non-probabilistic reliability metrics are critically reviewed, i.e., evidence- theory-based reliability metrics, interval-analysis-based reliability metrics, fuzzy-interval-analysis- based reliability metrics, possibility-theory-based reliability metrics (posbist reliability) and uncertainty-theory-based reliability metrics (belief reliability). It is pointed out that a qualified reli- ability metric that is able to consider the effect of epistemic uncertainty needs to ( 1 ) compensate the conservatism in the estimations of the component-level reliability metrics caused by epistemic uncertainty, and (2) satisfy the duality axiom, otherwise it might lead to paradoxical and confusing results in engineering applications. The five commonly used non-probabilistic reliability metrics are compared in terms of these two properties, and the comparison can serve as a basis for the selection of the appropriate reliability metrics.