Seagrass is not only known for its ecological role,but also for its high capacity on the carbon sequestration.Although the area of seagrass meadows was less than 0.2%of the world’s oceans,the yearly organic carbon bu...Seagrass is not only known for its ecological role,but also for its high capacity on the carbon sequestration.Although the area of seagrass meadows was less than 0.2%of the world’s oceans,the yearly organic carbon burial of seagrass reached 10%of that in the ocean.Anthropogenic activities in the past two decades and the climate change have led to a significant decrease of seagrass meadow.Since seagrass is widely distributed along the coastline of China,it is necessary to put more efforts on the seagrass conservation and restoration,which will consequently be a suitable nature based solution for mitigating the climate change.This paper provides a comprehensive review on the following five aspects:1)the seagrass distribution in China;2)the role that seagrass plays in the climate mitigation;3)carbon sequestration of seagrass in China;4)loss of seagrass habitats and 5)the restoration of seagrass habitat in China since 2013.Current research gap and prospective research direction were also pointed out in this study.展开更多
Hydrophobic organic compounds(HOCs)and heavy metals(HMs)are toxins that usually coexist in natural environments.Due to the differences in their properties,it remains challenging to simultaneously remove HMs and HOCs.I...Hydrophobic organic compounds(HOCs)and heavy metals(HMs)are toxins that usually coexist in natural environments.Due to the differences in their properties,it remains challenging to simultaneously remove HMs and HOCs.In this study,the removal of phenanthrene(Phe)and lead(Pb)from co-contaminated soils by single rhamnolipid(RL)and mixed RL-sophorolipid(SL)biosurfactants were evaluated via soil column experiments.Biosurfactant micelle sizes were determined by dynamic light scattering,and the mechanisms of micelle solubilization were studied.The effects of biosurfactant concentrations,pH,washing agent salinity and the ageing time of polluted soils on Phe and Pb desorption efficiencies were also assessed.The substantial removal of Phe and Pb using mixed RL-SL systems,when molar fractions of RLs were 0.7,was attributed to large mixed micelle formation and lower sorption losses of these systems.The optimal pH value was 6.0,while Phe desorption was favoured at high RLs and low ionic strengths.However,the RLs concentration and ionic strength had no obvious influence on Pb removal.In addition,both Phe and Pb desorption decreased with increased ageing of the polluted soils.Combined RL-SL biosurfactants can be effective for simultaneously removing HOCs and HMs from polluted soils.展开更多
基金supported by 2021 China Postdoctoral International Exchange Program Introduced Project Tianjin Jointly Funded Pilot Project,and the science and technology project of CNOOC EnerTech-Safety and Environmental Protection Company(HFKJ-STS2022-02).
文摘Seagrass is not only known for its ecological role,but also for its high capacity on the carbon sequestration.Although the area of seagrass meadows was less than 0.2%of the world’s oceans,the yearly organic carbon burial of seagrass reached 10%of that in the ocean.Anthropogenic activities in the past two decades and the climate change have led to a significant decrease of seagrass meadow.Since seagrass is widely distributed along the coastline of China,it is necessary to put more efforts on the seagrass conservation and restoration,which will consequently be a suitable nature based solution for mitigating the climate change.This paper provides a comprehensive review on the following five aspects:1)the seagrass distribution in China;2)the role that seagrass plays in the climate mitigation;3)carbon sequestration of seagrass in China;4)loss of seagrass habitats and 5)the restoration of seagrass habitat in China since 2013.Current research gap and prospective research direction were also pointed out in this study.
基金the National Natural Science Fund Projects of China(Nos.41371314 and 51202229)the Key Research&Development Project of Shandong Province(No.2017GHY15117)+1 种基金the Major Focus Project of Henan Academy of Sciences(No.19ZD08001)the Fundamental Research Funds for the Central Universities(No.18JK02025).
文摘Hydrophobic organic compounds(HOCs)and heavy metals(HMs)are toxins that usually coexist in natural environments.Due to the differences in their properties,it remains challenging to simultaneously remove HMs and HOCs.In this study,the removal of phenanthrene(Phe)and lead(Pb)from co-contaminated soils by single rhamnolipid(RL)and mixed RL-sophorolipid(SL)biosurfactants were evaluated via soil column experiments.Biosurfactant micelle sizes were determined by dynamic light scattering,and the mechanisms of micelle solubilization were studied.The effects of biosurfactant concentrations,pH,washing agent salinity and the ageing time of polluted soils on Phe and Pb desorption efficiencies were also assessed.The substantial removal of Phe and Pb using mixed RL-SL systems,when molar fractions of RLs were 0.7,was attributed to large mixed micelle formation and lower sorption losses of these systems.The optimal pH value was 6.0,while Phe desorption was favoured at high RLs and low ionic strengths.However,the RLs concentration and ionic strength had no obvious influence on Pb removal.In addition,both Phe and Pb desorption decreased with increased ageing of the polluted soils.Combined RL-SL biosurfactants can be effective for simultaneously removing HOCs and HMs from polluted soils.