The ongoing need to deliver improved safety, productivity and environmental benefit in coal mining presents an open challenge as well as a powerful incentive to develop new and improved solutions. This paper assesses ...The ongoing need to deliver improved safety, productivity and environmental benefit in coal mining presents an open challenge as well as a powerful incentive to develop new and improved solutions. This paper assesses the critical role that enabling technologies have played in the delivery of remote and automated capability for longwall mining. A brief historical account is given to highlight key technical contributions which have influenced the direction and development of present-day longwall technology. The current state of longwall automation is discussed with particular attention drawn to the technologies that enable automated capability. Outcomes are presented from an independently conducted case study that assessed the impact that CSIRO's LASC longwall automation research has made to the longwall mining industry in Australia. Importantly, this study reveals how uptake of this innova- tive technology has significantly benefitted coal mine productivity, improved working conditions for personnel and enhanced environmental outcomes. These benefits have been widely adopted with CSIRO automation technology being used in 60 per cent of all Australian underground operations. International deployment of the technology is also emerging. The paper concludes with future challenges and opportunities to highfight the ongoing scope for longwall automation research and development.展开更多
This paper explores the ongoing development and implementation of longwall automation technology to achieve greater levels of underground coal mining performance. The primary driver behind the research and development...This paper explores the ongoing development and implementation of longwall automation technology to achieve greater levels of underground coal mining performance. The primary driver behind the research and development effort is to increase the safety, productivity and efficiency of longwall mining operations to enhance the underlying mining business. A brief review of major longwall automation challenges is given followed by a review of the insights and benefits associated with the LASC longwall shearer automation solution. Areas of technical challenge in sensing, decision support, autonomy and human interaction are then highlighted, with specific attention given to remote operating centres, proximity detection and systems-level architectures in order to motivate further automation system development.The vision for a fully integrated coal mining ecosystem is discussed with the goal of delivering a highperformance, zero-exposure and environmentally coherent mining operations.展开更多
Computational fluid dynamics(CFD) simulation is an effective approach to develop and optimise gas drainage design for underground longwall coal mining. As part of the project supported by the Australian Government Coa...Computational fluid dynamics(CFD) simulation is an effective approach to develop and optimise gas drainage design for underground longwall coal mining. As part of the project supported by the Australian Government Coal Mining Abatement Technology Support Package(CMATSP), threedimensional CFD simulations were conducted to test and optimise a conceptual design which proposes using horizontal boreholes to replace vertical boreholes at an underground coal mine in Australia.Drainage performance between a vertical borehole and a horizontal borehole was first carried out to compare their capacity and effectiveness. Then a series of cases with different horizontal borehole designs were simulated to optimise borehole configuration parameters such as location, diameter, and number of boreholes. The study shows that the horizontal borehole is able to create low pressure sinks that protect the workings from goaf gas ingresses by changing goaf gas flow directions, and that it has the advantage to continuously maintain such low pressure sinks near the tailgate as the longwall advances. An example of optimising horizontal borehole locations in the longwall lateral direction is also given in this paper.展开更多
文摘The ongoing need to deliver improved safety, productivity and environmental benefit in coal mining presents an open challenge as well as a powerful incentive to develop new and improved solutions. This paper assesses the critical role that enabling technologies have played in the delivery of remote and automated capability for longwall mining. A brief historical account is given to highlight key technical contributions which have influenced the direction and development of present-day longwall technology. The current state of longwall automation is discussed with particular attention drawn to the technologies that enable automated capability. Outcomes are presented from an independently conducted case study that assessed the impact that CSIRO's LASC longwall automation research has made to the longwall mining industry in Australia. Importantly, this study reveals how uptake of this innova- tive technology has significantly benefitted coal mine productivity, improved working conditions for personnel and enhanced environmental outcomes. These benefits have been widely adopted with CSIRO automation technology being used in 60 per cent of all Australian underground operations. International deployment of the technology is also emerging. The paper concludes with future challenges and opportunities to highfight the ongoing scope for longwall automation research and development.
文摘This paper explores the ongoing development and implementation of longwall automation technology to achieve greater levels of underground coal mining performance. The primary driver behind the research and development effort is to increase the safety, productivity and efficiency of longwall mining operations to enhance the underlying mining business. A brief review of major longwall automation challenges is given followed by a review of the insights and benefits associated with the LASC longwall shearer automation solution. Areas of technical challenge in sensing, decision support, autonomy and human interaction are then highlighted, with specific attention given to remote operating centres, proximity detection and systems-level architectures in order to motivate further automation system development.The vision for a fully integrated coal mining ecosystem is discussed with the goal of delivering a highperformance, zero-exposure and environmentally coherent mining operations.
基金the Department of Industry and Science,Australian Government for funding this researchthe management and staff of Glencore Bulga Underground Operations for their significant contributions in this project
文摘Computational fluid dynamics(CFD) simulation is an effective approach to develop and optimise gas drainage design for underground longwall coal mining. As part of the project supported by the Australian Government Coal Mining Abatement Technology Support Package(CMATSP), threedimensional CFD simulations were conducted to test and optimise a conceptual design which proposes using horizontal boreholes to replace vertical boreholes at an underground coal mine in Australia.Drainage performance between a vertical borehole and a horizontal borehole was first carried out to compare their capacity and effectiveness. Then a series of cases with different horizontal borehole designs were simulated to optimise borehole configuration parameters such as location, diameter, and number of boreholes. The study shows that the horizontal borehole is able to create low pressure sinks that protect the workings from goaf gas ingresses by changing goaf gas flow directions, and that it has the advantage to continuously maintain such low pressure sinks near the tailgate as the longwall advances. An example of optimising horizontal borehole locations in the longwall lateral direction is also given in this paper.