Na|NaCl-CaCl_(2)|Zn liquid metal battery is regarded as a promising energy storage system for power grids.Despite intensive attempts to present a real mechanism of metal electrodes reaction, those for Na||Zn LMBs are ...Na|NaCl-CaCl_(2)|Zn liquid metal battery is regarded as a promising energy storage system for power grids.Despite intensive attempts to present a real mechanism of metal electrodes reaction, those for Na||Zn LMBs are not clear yet. Herein, the anode reactions for the multiple discharge potential plateaus were deduced by means of FactSage thermochemical software, which were subsequently validated by X-ray diffraction analysis and the modeling of phase transformation in the cooling process. A pre-treatment process was proposed for the analysis of anode product composition using the atomic absorption spectrometry method, and the anode states at working temperature(560 ℃) were obtained by the Na-CaZn ternary phase for the first time. The results indicate the discharge of Na and Ca led to the formation of Ca-Zn intermetallic compounds, whilst the extraction of Ca in Ca-Zn intermetallic compounds was responsible for the multiple discharge plateaus. Moreover, it was found that the charging product was in electrochemical double liquid metal layers, which are composed of Na and Ca with dissolved Zn respectively.展开更多
基金the financial support from the National Natural Science Foundation of China(52074084)the Guangxi Innovation-driven Development Program,China(GUIKE AA18118030)。
文摘Na|NaCl-CaCl_(2)|Zn liquid metal battery is regarded as a promising energy storage system for power grids.Despite intensive attempts to present a real mechanism of metal electrodes reaction, those for Na||Zn LMBs are not clear yet. Herein, the anode reactions for the multiple discharge potential plateaus were deduced by means of FactSage thermochemical software, which were subsequently validated by X-ray diffraction analysis and the modeling of phase transformation in the cooling process. A pre-treatment process was proposed for the analysis of anode product composition using the atomic absorption spectrometry method, and the anode states at working temperature(560 ℃) were obtained by the Na-CaZn ternary phase for the first time. The results indicate the discharge of Na and Ca led to the formation of Ca-Zn intermetallic compounds, whilst the extraction of Ca in Ca-Zn intermetallic compounds was responsible for the multiple discharge plateaus. Moreover, it was found that the charging product was in electrochemical double liquid metal layers, which are composed of Na and Ca with dissolved Zn respectively.