Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Review...Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.展开更多
Prediction models were proposed to estimate the reduced Townsend ionization coefficient and ionization cross-section.A shape function of the reduced Townsend ionization coefficient curves was derived from the ionizati...Prediction models were proposed to estimate the reduced Townsend ionization coefficient and ionization cross-section.A shape function of the reduced Townsend ionization coefficient curves was derived from the ionization collision probability model.The function had three parameters:the first ionization potential energy,A_(α),and B_(α).A_(α)and B_(α)were related to the molecule symmetry and size.The polarization of molecules could characterize the molecule symmetry.The multi-layer molecular cross-section(MMCS)was proposed to describe the contributions of electrons and molecule radius on different molecule surfaces to collisions.A prediction model of the ionization cross-section was also proposed based on Aα.The molecule parameters were calculated by the Becke3–Lee–Yang–Parr(B3LYP)method and the 6–311G**basis set.We used available data of 30 and 23 gases,respectively,to build the prediction models of reduced Townsend ionization coefficients and ionization cross-sections.The relationships between the molecular parameters Aαand Bαand the ionization cross-section were built up via nonlinear fittings.The determination coefficients R^(2)of Aα,Bα,and the ionization cross-section were 0.877,0.887,and 0.838,respectively.The results showed that the accuracy of models was positively correlated with the molecule symmetry and reduced electric field.This was mainly related to the accuracy of the MMCS model in predicting Aα.The MMCS model needed to be improved to describe the collision direction selectivity caused by the molecule asymmetry.Under a high reduced electric field,that error of Aαhad less influence on the prediction results.However,the prediction results for single atoms with high symmetry were poor.This may be due to the absolute error of the model close to single atoms’reduced Townsend ionization coefficients.The models could provide the basis for gas insulation prediction and discharge calculations,especially for symmetric molecules under a high electric field.展开更多
Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently...Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.展开更多
CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,met...CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction.展开更多
Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Here...Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Herein,the key roles of Nafion for CO_(2)RR were systematically studied on Cu nanoparticles(NPs)electrocatalyst.We found that Nafion modifier not only inhibit hydrogen evolution reaction(HER)by decreasing the accessibility of H_(2)O from electrolyte to Cu NPs,and increase the CO_(2)concentration at electrocatalyst interface for enhancing the CO_(2)mass transfer process,but also activate CO_(2)molecule by Lewis acid-base interaction between Nafion and CO_(2)to accelerate the formation of^(*)CO,which favor of C–C coupling for boosting C_(2)product generation.Owing to these features,the HER selectivity was suppressed from 40.6%to 16.8%on optimal Cu@Nafion electrode at-1.2 V versus reversible hydrogen electrode(RHE),and as high as 73.5%faradaic efficiencies(FEs)of C_(2)products were achieved at the same applied potential,which was 2.6 times higher than that on bare Cu electrode(~28.3%).In addition,Nafion also contributed to the long-term stability by hinder Cu NPs morphology reconstruction.Thus,this work provides insights into the impact of Nafion on electrocatalytic CO_(2)RR performance.展开更多
We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experime...We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experimental results show that the addition of BSi in the silicone rubber(SR)system significantly increases the tensile shear strength between BSi and epoxy resin(EP),reaching 309%of the original value.On this basis,the mechanism of BSi to enhance the adhesion effect was discussed.The electron deficient B in BSi attracted the electron rich N and O in EP to enhance the chemical interaction,combined with the interfacial migration behavior in the curing process,to improve the adhesion strength.This study provides the design and synthesis ideas of adhesive aids,and a reference for further exploring the interface mechanism of epoxy resin matrix composites.展开更多
Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and...Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.展开更多
Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pos...Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pose ongoing challenges.Herein,we systematically explore the synergistic catalytic effect of incorporating Au with boron clusters for accelerating NRR kinetics.An in-situ abinitio strategy is employed to construct B-doped Au nanoparticles(2-6 nm in diameter)loaded on BO_(x) substrates(AuBO_(x)),in which B not only modulates the surface electronic structure of Au but also forms strong coupling interactions to stabilize the nanoparticles.The electrochemical results show that Au-BO_(x) possesses excellent NRR activity(NH_(3) yield of 48.52μg h^(-1)mg_(cat)^(-1),Faraday efficiency of 56.18%),and exhibits high stability and reproducibility throughout the electrocatalytic NRR process.Theoretical calculations reveal that the introduction of B induces the formation of both Au dangling bond and Au-B coupling bond.which considerably facilitates the hydrogenation of~*N_(2)^(-)~*NH_(3).The present work provides a new avenue for the preparation of metal-boron materials achieved by one-step reduction and doping process,utilizing boron clusters as reducing and stabilizing agents.展开更多
Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE...Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE),continuous Na loss during long-term operation,and low sodium-content of cathode materials.In this scenario,presodiation strategy by introducing an external sodium reservoir has been rationally proposed,which could supplement additional sodium ions into the system and thereby markedly improve both the cycling performance and energy density of SIBs.In this review,the significance of presodiation is initially introduced,followed by comprehensive interpretation on technological properties,underlying principles,and associated approaches,as well as our perspectives on present inferiorities and future research directions.Overall,this contribution outlines a distinct pathway towards the presodiation methodology,of significance but still in its nascent phase,which may inspire the targeted guidelines to explore new chemistry in this field.展开更多
Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and on...Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.展开更多
Interaction between chiral diols BDPDD, DMBDPD and BINOL with prochiral compounds was examined and some new supramolecular complexes were prepared. It was found that these chiral hosts could include prochiral guests,...Interaction between chiral diols BDPDD, DMBDPD and BINOL with prochiral compounds was examined and some new supramolecular complexes were prepared. It was found that these chiral hosts could include prochiral guests, a, b-unsaturated compounds or piper- azinedione derivatives to give inclusion crystals in different molar ratio. Formations of these supramolecular complexes were characterized by the data of IR and 1H NMR spectra.展开更多
Hard carbon has been regarded as the most promising anode material for sodiumion batteries(SIBs)due to its low cost,high reversible capacity,and low working potential.However,the uncertain sodium storage mechanism hin...Hard carbon has been regarded as the most promising anode material for sodiumion batteries(SIBs)due to its low cost,high reversible capacity,and low working potential.However,the uncertain sodium storage mechanism hinders the rational design and synthesis of high-performance hard carbon anode materials for practical SIBs.During the past decades,tremendous efforts have been put to stimulate the development of hard carbon materials.In this review,we discuss the recent progress of the study on the sodium storage mechanism of hard carbon anodes,and the effective strategies to improve their sodium storage performance have been summarized.It is anticipated that hard carbon anodes with high electrochemical properties will be inspired and fabricated for large-scale energy storage applications.展开更多
SO4^2-/TiO2-MoO3, a novel solid superacid, has been prepared and its catalytic activity at different synthetic conditions was examined with esterification of n-butanoic acid and n-butyl alcohol as probing reaction.The...SO4^2-/TiO2-MoO3, a novel solid superacid, has been prepared and its catalytic activity at different synthetic conditions was examined with esterification of n-butanoic acid and n-butyl alcohol as probing reaction.The optimum conditions were also found, that is, the mass ratio of MoO3 used in the compound is 25%, the calcination temperature 450℃, and the soaked consistency of H2SO4 is 0.5mol.L^-1. Then it was applied in the catalytic synthesis of six similar important ketals and acetals as catalyst and revealed high catalytic activity. Under the condition that the molar ratio of aldehyde/ketone to glycol was 1:1.5, the mass ratio of the catalyst to the reactants was 0.5% and the reaction time 1.0 h, the yield of ketals and acetals reached up to 63.2%. The catalyst can be easily recovered and reused.展开更多
A novel method for the determination of nickel and palladium in environmental samples by low temperature ETV-ICP-OES with dimethylglyoxime(DMG) as both the extractant and chemical modifier has been developed. In thi...A novel method for the determination of nickel and palladium in environmental samples by low temperature ETV-ICP-OES with dimethylglyoxime(DMG) as both the extractant and chemical modifier has been developed. In this study, it was found that nickel and palladium can form complexes with dimethylglyoxime(0. 05%, mass fraction) at pH 6.0 and can be extracted into chloroform quantitatively. The complexes can be evaporated into plasma at a suita-ble temperature( 1400℃) for ICP-OES detection. Under the optimized conditions, the detection limits of nickel and palladium are 0.48 and 0. 40 ng/mL, respectively, while the RSD values are separately 5.0% and 3.1% (p = 50 ng/mL, n = 7). The proposed method was applied to the determination of the target analytes in environmental sam-ples with satisfactory results.展开更多
Twelve classes of acetals and ketals were synthesized from aldehyde/ketone and glycol using ZiSiW12O40/TiO2 as a novel eco-friendly catalyst. The physical characterizations were carried out by TG/DTA, FT-IR, XRD, and ...Twelve classes of acetals and ketals were synthesized from aldehyde/ketone and glycol using ZiSiW12O40/TiO2 as a novel eco-friendly catalyst. The physical characterizations were carried out by TG/DTA, FT-IR, XRD, and ^1H NMR spectra. The results indicated that the catalyst showed excellent catalytic activity for the condensation reactions. The yield of 12 classes of acetals and ketals reached 56.3%-96.3% under the typical reaction conditions (the molar ratio of aldehyde/ketone and glycol was 1:1.5, the quantity of catalyst was 0.5% of feed stock, the reaction time was 1.0 h, and the reaction temperature was 80-116℃). The catalyst was easily recovered and reused to give almost the same yield of the product as that given by fresh TiSiW12O10/TiO2.展开更多
The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−...The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−)and 1,10-phenanthroline-iron complexes were introduced into the porous metal-organic framework by impregnation method,and further annealing treatment achieved the successful anchoring of single-atom-Fe in B-doped CN Matrix(FeN4CB).The ORR activity of FeN4CB is comparable to the widely used commercial 20 wt%Pt/C.Where the half-wave potential(E_(1/2))in alkaline medium up to 0.84 V,and even in the face of challenging ORR in acidic medium,the E_(1/2)of ORR driven by FeN4CB is still as high as 0.81 V.When FeN4CB was used as air cathode,the open circuit voltage of Zn-air battery reaches 1.435 V,and the power density and specific capacity are as high as 177 mW cm^(−2)and 800 mAh g_(Zn)^(−1)(theoretical value:820 mAh g_(Zn)^(−1)),respectively.The dazzling point of FeN4CB also appears in the high ORR stability,whether in alkaline or acidic media,E_(1/2)and limiting current density are still close to the initial value after 5000 times cycles.After continuously running the charge-discharge test for 220 h,the charge voltage and discharge voltage of the rechargeable zinc-air battery with FeN4CB as the air cathode maintained the initial state.Density functional theory calculations reveals that introducing B atom to Fe–N4–C can adjust the electronic structure to easily break O=O bond and significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity.展开更多
The wettability,surfactivity and the correlation between wettability and surfactivity of sodium diethylhexylphosphate,sodium diethylhexyl polyoxyethylene phosphate and their complex in NaOH solutions were studied.A co...The wettability,surfactivity and the correlation between wettability and surfactivity of sodium diethylhexylphosphate,sodium diethylhexyl polyoxyethylene phosphate and their complex in NaOH solutions were studied.A complex alkali resistant phosphate surfactant with good permeability was prepared.The wettability of surfactants was investigated by measuring the immersion time,sinking time and capillary effects of nature cotton grey fabric in NaOH solutions.The surfactivity of the surfactants was characterized by measuring the surface tension.The effect of the complex on the surface appearance of cotton grey fabric was also investigated with a scanning electron microscope(SEM) .The results show that all the surfactants exhibit good wettability for cotton grey fabric in 0.5-5.0 mol/L of NaOH solutions,the complex system exhibits better wettability in 5.0-7.0 mol/L of NaOH solutions,in comparison with either corresponding single surfactant component employed,and wettability is well correlative with the surfactivities of the surfactant.SEM images indicate that the cotton grey fabric is well wetted by the alkaline surfactant solution and the quality of fabric is improved.展开更多
SO4^2- / TiO2-La2O3, a novel solid superacid, was prepared and its catalytic activities at different synthetic conditions are discussed with esterification of n-butanoic acid and n-butyl alcohol as probing reaction. T...SO4^2- / TiO2-La2O3, a novel solid superacid, was prepared and its catalytic activities at different synthetic conditions are discussed with esterification of n-butanoic acid and n-butyl alcohol as probing reaction. The optimum conditions have also been found, mole ratio of n(La^3+):n(Ti^4+) is 1:34, the soaked consistency of H2SO4 is 0.8 tool/L, the soaked time of HESO4 is 24 h, the calcining temperature is 480 ℃, the calcining time is 3 h. Then it was applied in the catalytic synthesis often important ketals and acetals as catalyst and revealed high catalytic activity. Under these conditions on which the molar ratio of aldehyde/ketone to glycol is l: 1.5, the mass ratio of the catalyst used in the reactants is 0.5%, and the reaction time is 1.0 h, the yields of ketals and acetals can reach 41.4%-95.8%.展开更多
A new phase, the rare earth complex oxide SnDy2O4 was synthesized by the thermal decomposition of its oxalate precursor that was prepared by rheological phase reaction method. TG, IR, XRD and EPS were used to prove t...A new phase, the rare earth complex oxide SnDy2O4 was synthesized by the thermal decomposition of its oxalate precursor that was prepared by rheological phase reaction method. TG, IR, XRD and EPS were used to prove the formation of the compound SnDy2O4. The structure of SnDy2O4 was refined by Rietveld analysis. SnDy2O4 is cubic, a = 7.40366 ? V = 405.82 ?, Z = 4.展开更多
The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement...The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement with the theoretical value. XRD profile demonstrates that the product of the thermal decomposition at 500℃ is LiCI. For the decomposition kinetics study, the activation energies calculated with the Friedman method were considered as the initial values for non-linear regression and were used for verifying the correctness of the fired models. The decomposition process was fitted by a two-step consecutive reaction: extended Prout-Tompkins equation[Bna, f(α) is (1-α)^nα^α] followed by a lth order reaction(F1). The activation energies were (215.6±0.2) and (251.6±3.6) kJ/mol, respectively. The exponentials n and a for Bna reaction were (0.25±0.05) and (0.795±0.005), respectively. The reaction types and activation energies were in agreement with those obtained from the isothermal method, but the exponentials were optimized for better firing and prediction.展开更多
基金supported partly by the National Natural Science Foundation of China,Nos.32161143021 and 81271410the Natural Science Foundation of Henan Province of China,No.182300410313(all to JW)。
文摘Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future.
基金supported by National Natural Science Foundation of China(No.U1966211)National Key R&D Program of China(No.2021YFB2401400)。
文摘Prediction models were proposed to estimate the reduced Townsend ionization coefficient and ionization cross-section.A shape function of the reduced Townsend ionization coefficient curves was derived from the ionization collision probability model.The function had three parameters:the first ionization potential energy,A_(α),and B_(α).A_(α)and B_(α)were related to the molecule symmetry and size.The polarization of molecules could characterize the molecule symmetry.The multi-layer molecular cross-section(MMCS)was proposed to describe the contributions of electrons and molecule radius on different molecule surfaces to collisions.A prediction model of the ionization cross-section was also proposed based on Aα.The molecule parameters were calculated by the Becke3–Lee–Yang–Parr(B3LYP)method and the 6–311G**basis set.We used available data of 30 and 23 gases,respectively,to build the prediction models of reduced Townsend ionization coefficients and ionization cross-sections.The relationships between the molecular parameters Aαand Bαand the ionization cross-section were built up via nonlinear fittings.The determination coefficients R^(2)of Aα,Bα,and the ionization cross-section were 0.877,0.887,and 0.838,respectively.The results showed that the accuracy of models was positively correlated with the molecule symmetry and reduced electric field.This was mainly related to the accuracy of the MMCS model in predicting Aα.The MMCS model needed to be improved to describe the collision direction selectivity caused by the molecule asymmetry.Under a high reduced electric field,that error of Aαhad less influence on the prediction results.However,the prediction results for single atoms with high symmetry were poor.This may be due to the absolute error of the model close to single atoms’reduced Townsend ionization coefficients.The models could provide the basis for gas insulation prediction and discharge calculations,especially for symmetric molecules under a high electric field.
基金the National Nature Science Foundation of China(No.22305066).
文摘Currently,the microwave absorbers usually suffer dreadful electromagnetic wave absorption(EMWA)performance damping at elevated temperature due to impedance mismatching induced by increased conduction loss.Consequently,the development of high-performance EMWA materials with good impedance matching and strong loss ability in wide temperature spectrum has emerged as a top priority.Herein,due to the high melting point,good electrical conductivity,excellent environmental stability,EM coupling effect,and abundant interfaces of titanium nitride(TiN)nanotubes,they were designed based on the controlling kinetic diffusion procedure and Ostwald ripening process.Benefiting from boosted heterogeneous interfaces between TiN nanotubes and polydimethylsiloxane(PDMS),enhanced polarization loss relaxations were created,which could not only improve the depletion efficiency of EMWA,but also contribute to the optimized impedance matching at elevated temperature.Therefore,the TiN nanotubes/PDMS composite showed excellent EMWA performances at varied temperature(298-573 K),while achieved an effective absorption bandwidth(EAB)value of 3.23 GHz and a minimum reflection loss(RLmin)value of−44.15 dB at 423 K.This study not only clarifies the relationship between dielectric loss capacity(conduction loss and polarization loss)and temperature,but also breaks new ground for EM absorbers in wide temperature spectrum based on interface engineering.
基金financially supported by the National Natural Science Foundation of China(Nos.22072110 and 21872107)the Key Research and Development Projects of Hubei Province,China(2022BAA083)。
文摘CO_(2) electrochemical reduction(CO_(2)ER)is an important research area for carbon neutralization.However,available catalysts for CO_(2) reduction are still characterized by limited stability and activity.Recently,metallic bismuth(Bi)has emerged as a promising catalyst for CO_(2) ER.Herein,we report the solid cathode electroreduction of commercial micronized Bi2O3as a straightforward approach for the preparation of nanostructured Bi.At-1.1 V versus reversible hydrogen electrode in a KHCO3aqueous electrolyte,the resulting nanostructure Bi delivers a formate current density of~40 mA·cm^(-2) with a current efficiency of~86%,and the formate selectivity reaches97.6% at-0.78 V.Using nanosized Bi2O3as the precursor can further reduce the primary particle sizes of the resulting Bi,leading to a significantly increased formate selectivity at relatively low overpotentials.The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure,which exposes abundant active sites for CO_(2) electrocatalytic reduction.
基金financially supported by the Natural Science Foundation of Guangdong Province (2022A1515012359)the National Natural Science Foundation of China (21902121)+1 种基金the STU Scientific Research Foundation for Talents (NTF21020)the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant (2020LKSFG09A)。
文摘Nafion as a universal polymer ionomer was widely applied for nanocatalysts electrode preparation.However,the effect of Nafion on electrocatalytic performance was often overlooked,especially for CO_(2)electrolysis.Herein,the key roles of Nafion for CO_(2)RR were systematically studied on Cu nanoparticles(NPs)electrocatalyst.We found that Nafion modifier not only inhibit hydrogen evolution reaction(HER)by decreasing the accessibility of H_(2)O from electrolyte to Cu NPs,and increase the CO_(2)concentration at electrocatalyst interface for enhancing the CO_(2)mass transfer process,but also activate CO_(2)molecule by Lewis acid-base interaction between Nafion and CO_(2)to accelerate the formation of^(*)CO,which favor of C–C coupling for boosting C_(2)product generation.Owing to these features,the HER selectivity was suppressed from 40.6%to 16.8%on optimal Cu@Nafion electrode at-1.2 V versus reversible hydrogen electrode(RHE),and as high as 73.5%faradaic efficiencies(FEs)of C_(2)products were achieved at the same applied potential,which was 2.6 times higher than that on bare Cu electrode(~28.3%).In addition,Nafion also contributed to the long-term stability by hinder Cu NPs morphology reconstruction.Thus,this work provides insights into the impact of Nafion on electrocatalytic CO_(2)RR performance.
基金the Core Research Facilities of College of Chemistry and Molecular Sciences and Wuhan University Test Center and Open Fund of Hubei Key Laboratory of Aerospace Power Advanced Technologythe Open Fund of Hubei Key Laboratory of Aerospace Power Advanced Technologythe Special Fund for Industrial and informatization Industry Foundation Reconstruction and High Quality Development of Manufacturing Industry(No.TC220H068)。
文摘We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experimental results show that the addition of BSi in the silicone rubber(SR)system significantly increases the tensile shear strength between BSi and epoxy resin(EP),reaching 309%of the original value.On this basis,the mechanism of BSi to enhance the adhesion effect was discussed.The electron deficient B in BSi attracted the electron rich N and O in EP to enhance the chemical interaction,combined with the interfacial migration behavior in the curing process,to improve the adhesion strength.This study provides the design and synthesis ideas of adhesive aids,and a reference for further exploring the interface mechanism of epoxy resin matrix composites.
基金financially supported by the Natural Science Foundation of Henan Province Youth Fund of China(No.242300421466)the Key Scientific Research Project Plan in Universities of Henan Province,China(No.23A430037)+1 种基金the Research Project of Xuchang University,China(No.2024ZD004)the College Students’Innovation and Entrepreneurship Training Program of China(No.202410480008).
文摘Facing the complex variable high-temperature environment,electromagnetic wave(EMW)absorbing materials maintaining high stability and satisfying absorbing properties is essential.This study focused on the synthesis and EMW absorbing performance evaluation of TiN/Fe_(2)N/C composite materials,which were prepared using electrostatic spinning followed by a high-temperature nitridation process.The TiN/Fe_(2)N/C fibers constructed a well-developed conductive network that generates considerable conduction loss.The heterogeneous interfaces between different components generated a significant level of interfacial polarization.Thanks to the synergistic effect of stable dielectric loss and optimized impedance matching,the TiN/Fe_(2)N/C composite materials demonstrated excellent and stable absorption performance across a wide temperature range(293-453 K).Moreover,TiN/Fe_(2)N/C-15 achieved a minimum reflection loss(RL)of−48.01 dB and an effective absorption bandwidth(EAB)of 3.64 GHz at 2.1 mm and 373 K.This work provides new insights into the development of high-efficiency and stabile EMW absorbing materials under complex variable high-temperature conditions.
基金supported by the National Natural Science Foundation of China(22075133,62288102,22375091,21971114,and 21701086)the Jiangsu Provincial Funds(BX2022013)。
文摘Au is considered as one of the most promising catalysts for nitrogen reduction reaction(NRR),however maximizing the activity utilization rate of Au and understanding the synergistic effects between Au and carriers pose ongoing challenges.Herein,we systematically explore the synergistic catalytic effect of incorporating Au with boron clusters for accelerating NRR kinetics.An in-situ abinitio strategy is employed to construct B-doped Au nanoparticles(2-6 nm in diameter)loaded on BO_(x) substrates(AuBO_(x)),in which B not only modulates the surface electronic structure of Au but also forms strong coupling interactions to stabilize the nanoparticles.The electrochemical results show that Au-BO_(x) possesses excellent NRR activity(NH_(3) yield of 48.52μg h^(-1)mg_(cat)^(-1),Faraday efficiency of 56.18%),and exhibits high stability and reproducibility throughout the electrocatalytic NRR process.Theoretical calculations reveal that the introduction of B induces the formation of both Au dangling bond and Au-B coupling bond.which considerably facilitates the hydrogenation of~*N_(2)^(-)~*NH_(3).The present work provides a new avenue for the preparation of metal-boron materials achieved by one-step reduction and doping process,utilizing boron clusters as reducing and stabilizing agents.
基金the financial support from the National Nature Science Foundation of China(No.U20A20249)the National Key Research and Development Program of China(2021YFB3800300)the Shenzhen Science and Technology Innovation Commission(KCXST20221021111216037)。
文摘Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE),continuous Na loss during long-term operation,and low sodium-content of cathode materials.In this scenario,presodiation strategy by introducing an external sodium reservoir has been rationally proposed,which could supplement additional sodium ions into the system and thereby markedly improve both the cycling performance and energy density of SIBs.In this review,the significance of presodiation is initially introduced,followed by comprehensive interpretation on technological properties,underlying principles,and associated approaches,as well as our perspectives on present inferiorities and future research directions.Overall,this contribution outlines a distinct pathway towards the presodiation methodology,of significance but still in its nascent phase,which may inspire the targeted guidelines to explore new chemistry in this field.
基金National Natural Science Foundation of China,Grant/Award Numbers:21972108,U20A20249,U22A20438Changzhou Science and Technology Bureau,Grant/Award Number:CM20223017Innovation and Technology Commission(ITC)of Hong Kong,The Innovation&Technology Fund(ITF)with Project No.ITS/126/21。
文摘Iron‐based pyrophosphates are attractive cathodes for sodium‐ion batteries due to their large framework,cost‐effectiveness,and high energy density.However,the understanding of the crystal structure is scarce and only a limited candidates have been reported so far.In this work,we found for the first time that a continuous solid solution,Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2)(0≤α≤1,could be obtained by mutual substitution of cations at center‐symmetric Na3 and Na4 sites while keeping the crystal building blocks of anionic P_(2)O_(7) unchanged.In particular,a novel off‐stoichiometric Na_(3)Fe(2.5)(P_(2)O_(7))_(2)is thus proposed,and its structure,energy storage mechanism,and electrochemical performance are extensively investigated to unveil the structure–function relationship.The as‐prepared off‐stoichiometric electrode delivers appealing performance with a reversible discharge capacity of 83 mAh g^(−1),a working voltage of 2.9 V(vs.Na^(+)/Na),the retention of 89.2%of the initial capacity after 500 cycles,and enhanced rate capability of 51 mAh g^(−1)at a current density of 1600 mA g^(−1).This research shows that sodium ferric pyrophosphate could form extended solid solution composition and promising phase is concealed in the range of Na_(4−α)Fe_(2+α)_(2)(P_(2)O_(7))_(2),offering more chances for exploration of new cathode materials for the construction of high‐performance SIBs.
基金This work was supported by the National Natural Science Foundation of China (Project 29972033) and the Key Science Research Foundation of Hubei Province of China (Project 98IP1305).
文摘Interaction between chiral diols BDPDD, DMBDPD and BINOL with prochiral compounds was examined and some new supramolecular complexes were prepared. It was found that these chiral hosts could include prochiral guests, a, b-unsaturated compounds or piper- azinedione derivatives to give inclusion crystals in different molar ratio. Formations of these supramolecular complexes were characterized by the data of IR and 1H NMR spectra.
基金Key Research Program of Hubei Province,Grant/Award Number:2020BAA030National Nature Science Foundation of China,Grant/Award Number:U20A20249 and 21972108。
文摘Hard carbon has been regarded as the most promising anode material for sodiumion batteries(SIBs)due to its low cost,high reversible capacity,and low working potential.However,the uncertain sodium storage mechanism hinders the rational design and synthesis of high-performance hard carbon anode materials for practical SIBs.During the past decades,tremendous efforts have been put to stimulate the development of hard carbon materials.In this review,we discuss the recent progress of the study on the sodium storage mechanism of hard carbon anodes,and the effective strategies to improve their sodium storage performance have been summarized.It is anticipated that hard carbon anodes with high electrochemical properties will be inspired and fabricated for large-scale energy storage applications.
文摘SO4^2-/TiO2-MoO3, a novel solid superacid, has been prepared and its catalytic activity at different synthetic conditions was examined with esterification of n-butanoic acid and n-butyl alcohol as probing reaction.The optimum conditions were also found, that is, the mass ratio of MoO3 used in the compound is 25%, the calcination temperature 450℃, and the soaked consistency of H2SO4 is 0.5mol.L^-1. Then it was applied in the catalytic synthesis of six similar important ketals and acetals as catalyst and revealed high catalytic activity. Under the condition that the molar ratio of aldehyde/ketone to glycol was 1:1.5, the mass ratio of the catalyst to the reactants was 0.5% and the reaction time 1.0 h, the yield of ketals and acetals reached up to 63.2%. The catalyst can be easily recovered and reused.
基金Supported by the National Natural Science Foundation of China(No.20575048).
文摘A novel method for the determination of nickel and palladium in environmental samples by low temperature ETV-ICP-OES with dimethylglyoxime(DMG) as both the extractant and chemical modifier has been developed. In this study, it was found that nickel and palladium can form complexes with dimethylglyoxime(0. 05%, mass fraction) at pH 6.0 and can be extracted into chloroform quantitatively. The complexes can be evaporated into plasma at a suita-ble temperature( 1400℃) for ICP-OES detection. Under the optimized conditions, the detection limits of nickel and palladium are 0.48 and 0. 40 ng/mL, respectively, while the RSD values are separately 5.0% and 3.1% (p = 50 ng/mL, n = 7). The proposed method was applied to the determination of the target analytes in environmental sam-ples with satisfactory results.
基金This work was financially supported by the Natural Science Foundation of Hubei Province, China (No. 2005ABA053) and the National Natural Science Foundation of China (No. 20471044).
文摘Twelve classes of acetals and ketals were synthesized from aldehyde/ketone and glycol using ZiSiW12O40/TiO2 as a novel eco-friendly catalyst. The physical characterizations were carried out by TG/DTA, FT-IR, XRD, and ^1H NMR spectra. The results indicated that the catalyst showed excellent catalytic activity for the condensation reactions. The yield of 12 classes of acetals and ketals reached 56.3%-96.3% under the typical reaction conditions (the molar ratio of aldehyde/ketone and glycol was 1:1.5, the quantity of catalyst was 0.5% of feed stock, the reaction time was 1.0 h, and the reaction temperature was 80-116℃). The catalyst was easily recovered and reused to give almost the same yield of the product as that given by fresh TiSiW12O10/TiO2.
基金financially supported by the NSFC-Yunnan Joint Foundation(U2002213)the Double Tops Joint Fund of the Yunnan Science and Technology Bureau and Yunnan University(2019FY003025)the‘Double-First Class’University Construction Project(C176220100042 and CZ21623201)。
文摘The biggest challenge is to develop a low cost and readily available catalyst to replace expensive commercial Pt/C for efficient electrochemical oxygen reduction reaction(ORR).In this research,closo-[B_(12)H_(12)]^(2−)and 1,10-phenanthroline-iron complexes were introduced into the porous metal-organic framework by impregnation method,and further annealing treatment achieved the successful anchoring of single-atom-Fe in B-doped CN Matrix(FeN4CB).The ORR activity of FeN4CB is comparable to the widely used commercial 20 wt%Pt/C.Where the half-wave potential(E_(1/2))in alkaline medium up to 0.84 V,and even in the face of challenging ORR in acidic medium,the E_(1/2)of ORR driven by FeN4CB is still as high as 0.81 V.When FeN4CB was used as air cathode,the open circuit voltage of Zn-air battery reaches 1.435 V,and the power density and specific capacity are as high as 177 mW cm^(−2)and 800 mAh g_(Zn)^(−1)(theoretical value:820 mAh g_(Zn)^(−1)),respectively.The dazzling point of FeN4CB also appears in the high ORR stability,whether in alkaline or acidic media,E_(1/2)and limiting current density are still close to the initial value after 5000 times cycles.After continuously running the charge-discharge test for 220 h,the charge voltage and discharge voltage of the rechargeable zinc-air battery with FeN4CB as the air cathode maintained the initial state.Density functional theory calculations reveals that introducing B atom to Fe–N4–C can adjust the electronic structure to easily break O=O bond and significantly reduce the energy barrier of the rate-determining step resulting in an improved ORR activity.
基金Project(20573079) supported by the National Natural Science Foundation of China
文摘The wettability,surfactivity and the correlation between wettability and surfactivity of sodium diethylhexylphosphate,sodium diethylhexyl polyoxyethylene phosphate and their complex in NaOH solutions were studied.A complex alkali resistant phosphate surfactant with good permeability was prepared.The wettability of surfactants was investigated by measuring the immersion time,sinking time and capillary effects of nature cotton grey fabric in NaOH solutions.The surfactivity of the surfactants was characterized by measuring the surface tension.The effect of the complex on the surface appearance of cotton grey fabric was also investigated with a scanning electron microscope(SEM) .The results show that all the surfactants exhibit good wettability for cotton grey fabric in 0.5-5.0 mol/L of NaOH solutions,the complex system exhibits better wettability in 5.0-7.0 mol/L of NaOH solutions,in comparison with either corresponding single surfactant component employed,and wettability is well correlative with the surfactivities of the surfactant.SEM images indicate that the cotton grey fabric is well wetted by the alkaline surfactant solution and the quality of fabric is improved.
基金Project supported by the National Natural Science Foundation of China (No. 20471044), and the Natural Science Foundation of Hubei Province (No. 2005ABA053), China
文摘SO4^2- / TiO2-La2O3, a novel solid superacid, was prepared and its catalytic activities at different synthetic conditions are discussed with esterification of n-butanoic acid and n-butyl alcohol as probing reaction. The optimum conditions have also been found, mole ratio of n(La^3+):n(Ti^4+) is 1:34, the soaked consistency of H2SO4 is 0.8 tool/L, the soaked time of HESO4 is 24 h, the calcining temperature is 480 ℃, the calcining time is 3 h. Then it was applied in the catalytic synthesis often important ketals and acetals as catalyst and revealed high catalytic activity. Under these conditions on which the molar ratio of aldehyde/ketone to glycol is l: 1.5, the mass ratio of the catalyst used in the reactants is 0.5%, and the reaction time is 1.0 h, the yields of ketals and acetals can reach 41.4%-95.8%.
基金This work was supported by the National Natural Science Foundation of China(No.20071026)
文摘A new phase, the rare earth complex oxide SnDy2O4 was synthesized by the thermal decomposition of its oxalate precursor that was prepared by rheological phase reaction method. TG, IR, XRD and EPS were used to prove the formation of the compound SnDy2O4. The structure of SnDy2O4 was refined by Rietveld analysis. SnDy2O4 is cubic, a = 7.40366 ? V = 405.82 ?, Z = 4.
基金Supported by the National Natural Science Foundation of China(No.20071026)
文摘The non-isothermal decomposition kinetics of LiClO4 in flow N2 atmosphere was studied. TG-DTA curves show that the decomposition proceeded through two well-defined steps below 900℃, and the mass loss was in agreement with the theoretical value. XRD profile demonstrates that the product of the thermal decomposition at 500℃ is LiCI. For the decomposition kinetics study, the activation energies calculated with the Friedman method were considered as the initial values for non-linear regression and were used for verifying the correctness of the fired models. The decomposition process was fitted by a two-step consecutive reaction: extended Prout-Tompkins equation[Bna, f(α) is (1-α)^nα^α] followed by a lth order reaction(F1). The activation energies were (215.6±0.2) and (251.6±3.6) kJ/mol, respectively. The exponentials n and a for Bna reaction were (0.25±0.05) and (0.795±0.005), respectively. The reaction types and activation energies were in agreement with those obtained from the isothermal method, but the exponentials were optimized for better firing and prediction.