Extensive transgression of lake water occurred during the Cretaceous Qingshankou Stage and the Nengjiang Stage in the Songliao basin, forming widespread deep-water deposits. Eleven types of microfacies of deep-water d...Extensive transgression of lake water occurred during the Cretaceous Qingshankou Stage and the Nengjiang Stage in the Songliao basin, forming widespread deep-water deposits. Eleven types of microfacies of deep-water deposits have been recognized in the continuous core rocks from the SKII, including mudstone of still water, marlite, dolostone, off shale, volcanic ashes, turbidite, slump sediment, tempestite, seismite, ostracoda limestone and sparry carbonate, which are divided into two types: microfacies generated due to gradually changing environments (Ⅰ) and microfacies generated due to geological events (Ⅱ). Type Ⅰ is composed of some special fine grain sediments such as marlite, dolomite stone and oil shale as well as mudstone and Type Ⅱ is composed of some sediments related to geological events, such as volcanic ashes, turbiditie, slump sediment, tempestite, seismite, ostracoda limestone. The formation of sparry carbonate may be controlled by factors related to both environments and events. Generally, mudstone sediments of still water can be regarded as background sediments, and the rest sediments are all event sediments, which have unique forming models, which may reflect controlling effects of climatics and tectonics.展开更多
An analysis of drill cores and well logs shows that the main micro-facies of the third member sand bodies of the Qingshankou Formation in Qian'an are subaqueous distributary channel facies, sheet sand facies and suba...An analysis of drill cores and well logs shows that the main micro-facies of the third member sand bodies of the Qingshankou Formation in Qian'an are subaqueous distributary channel facies, sheet sand facies and subaqueous fan facies (olistostrome). Maps showing the distribution of these micro-facies together with inter-channel bay and prodelta mocro-facies are presented for different time-slices (lower, middle and upper parts of the Qingshankou Formation). These maps reveal the instability and change of sediment transport in the Baokang sedimentary system during the depositional period. Sediment transport was from the west in the early stage, from the south in the middle stage and from the northwest in the late stage. Values of thickness, porosity and permeability of the sand bodies in the third member of the Qingshankou Formation show that they have low to medium porosity and low permeability, and are characterized by serious reservoir heterogeneity. The joints between micro-facies and subaqueous fan micro-facies are characterized by the highest heterogeneity, the sheet sand and distal sand bar subfacies come next, and the heterogeneity of the subaqueous distributary channel sand bodies is relatively weak.展开更多
In south of the Songliao Basin and adjacent area of NE China, there are several high conductive layers in crust and upper mantle. Those layers are interpreted as detachment and rheology, which represent some features ...In south of the Songliao Basin and adjacent area of NE China, there are several high conductive layers in crust and upper mantle. Those layers are interpreted as detachment and rheology, which represent some features of lithosphere, asthenosphere and Moho, and related to the crust-mantle structure of the continent in the study area. The differences of the crust-mantle structures in different places in the study area reflect the differences in the movement and evolution of asthenosphere, lithosphere and crust. The differences can be summarized as follows. (1) Along the south profile of MT, the buried depth of the surface of Moho is 31 ~34 km beneath the Liaohe Basin and 35~37 km beneath the west Liaoning area. Along the north profile of MT, the buried depth of Moho is 32~33 km beneath Changtu area and 36~37 km beneath Kailu area in southern Songliao Basin. The buried depth beneath the central of the Songliao Basin is 29 km.(2) The difference of thickness of lithosphere exists in the south area and the north area of Chifeng-Kaiyuan fault. The thickness of lithosphere is about 65~120 km in the south of the fault, thickening from east to west. The top surface of asthenosphere is highly uplifted in the Liaohe Basin and the highest point is about 65 km in buried depth. The thickness of lithosphere in the north of the fault is about 60~65 km, thinner about 25 km than that in the south of the fault (West Liaoning). Deep processes such as upwelling of mantle thermal flow, extension of lithosphere, underplating, and thinning and subsidence of crust, evidenced from the crust-mantle structures were the direct forces of the basin formation in the study area during the Mesozoic-Cenozoic.展开更多
The Qilishan gold deposit is located in the southern Zhaolai gold ore belt in the northwestern Jiaodong region.A total of seven gold ore bodies have been found in the mining area.Linglong gneissic biotite granite and ...The Qilishan gold deposit is located in the southern Zhaolai gold ore belt in the northwestern Jiaodong region.A total of seven gold ore bodies have been found in the mining area.Linglong gneissic biotite granite and the NE trending Lingbei fracture control the output and distribution of the gold deposit.The ore bodies with veined or irregular shape occur in the structural alteration zone.The ore bodies of different sizes are NE trending and SE dipping.The constituent minerals of the ores mainly include pyrite,chalcopyrite,native gold,electrum,argentite,matildite,hematite,quartz and calcite.The ores are characterized by metasomatic dissolution structure,as well as veined and brecciated structures.The ore-forming process is divided into four stages,namely quartz-,pyrite-,polymetallic-and carbonate stages.Study on fluid inclusion shows that the deposit is composed of gas-liquid two-phase inclusions (Ⅰ) and three-phase inclusions containing CO2 (Ⅱ),and that the former dominates.The homogenization temperature is 259.6℃-373.7℃ ; the salinity of three-phase inclusions containing CO2is 5.77%-9.84% (NaCl) ; the salinity of gas-liquid two-phase inclusions is 6.58%-8.54% (NaCl) ; and the estimated ore-forming pressure is 55.2-82.2 MPa.According to the nonlinear relationship between the depth and pressure of the fluid in the fracture zone,the ore-forming depth of the Qilishan gold deposit is calculated as 5.95-7.14 km.It is preliminarily determined that the deposit is a mesophilic and hypothermal gold deposit.展开更多
文摘Extensive transgression of lake water occurred during the Cretaceous Qingshankou Stage and the Nengjiang Stage in the Songliao basin, forming widespread deep-water deposits. Eleven types of microfacies of deep-water deposits have been recognized in the continuous core rocks from the SKII, including mudstone of still water, marlite, dolostone, off shale, volcanic ashes, turbidite, slump sediment, tempestite, seismite, ostracoda limestone and sparry carbonate, which are divided into two types: microfacies generated due to gradually changing environments (Ⅰ) and microfacies generated due to geological events (Ⅱ). Type Ⅰ is composed of some special fine grain sediments such as marlite, dolomite stone and oil shale as well as mudstone and Type Ⅱ is composed of some sediments related to geological events, such as volcanic ashes, turbiditie, slump sediment, tempestite, seismite, ostracoda limestone. The formation of sparry carbonate may be controlled by factors related to both environments and events. Generally, mudstone sediments of still water can be regarded as background sediments, and the rest sediments are all event sediments, which have unique forming models, which may reflect controlling effects of climatics and tectonics.
文摘An analysis of drill cores and well logs shows that the main micro-facies of the third member sand bodies of the Qingshankou Formation in Qian'an are subaqueous distributary channel facies, sheet sand facies and subaqueous fan facies (olistostrome). Maps showing the distribution of these micro-facies together with inter-channel bay and prodelta mocro-facies are presented for different time-slices (lower, middle and upper parts of the Qingshankou Formation). These maps reveal the instability and change of sediment transport in the Baokang sedimentary system during the depositional period. Sediment transport was from the west in the early stage, from the south in the middle stage and from the northwest in the late stage. Values of thickness, porosity and permeability of the sand bodies in the third member of the Qingshankou Formation show that they have low to medium porosity and low permeability, and are characterized by serious reservoir heterogeneity. The joints between micro-facies and subaqueous fan micro-facies are characterized by the highest heterogeneity, the sheet sand and distal sand bar subfacies come next, and the heterogeneity of the subaqueous distributary channel sand bodies is relatively weak.
文摘In south of the Songliao Basin and adjacent area of NE China, there are several high conductive layers in crust and upper mantle. Those layers are interpreted as detachment and rheology, which represent some features of lithosphere, asthenosphere and Moho, and related to the crust-mantle structure of the continent in the study area. The differences of the crust-mantle structures in different places in the study area reflect the differences in the movement and evolution of asthenosphere, lithosphere and crust. The differences can be summarized as follows. (1) Along the south profile of MT, the buried depth of the surface of Moho is 31 ~34 km beneath the Liaohe Basin and 35~37 km beneath the west Liaoning area. Along the north profile of MT, the buried depth of Moho is 32~33 km beneath Changtu area and 36~37 km beneath Kailu area in southern Songliao Basin. The buried depth beneath the central of the Songliao Basin is 29 km.(2) The difference of thickness of lithosphere exists in the south area and the north area of Chifeng-Kaiyuan fault. The thickness of lithosphere is about 65~120 km in the south of the fault, thickening from east to west. The top surface of asthenosphere is highly uplifted in the Liaohe Basin and the highest point is about 65 km in buried depth. The thickness of lithosphere in the north of the fault is about 60~65 km, thinner about 25 km than that in the south of the fault (West Liaoning). Deep processes such as upwelling of mantle thermal flow, extension of lithosphere, underplating, and thinning and subsidence of crust, evidenced from the crust-mantle structures were the direct forces of the basin formation in the study area during the Mesozoic-Cenozoic.
基金Supported by Project of Alternative Resources Prospecting in Crisis Mines(No.200623018)
文摘The Qilishan gold deposit is located in the southern Zhaolai gold ore belt in the northwestern Jiaodong region.A total of seven gold ore bodies have been found in the mining area.Linglong gneissic biotite granite and the NE trending Lingbei fracture control the output and distribution of the gold deposit.The ore bodies with veined or irregular shape occur in the structural alteration zone.The ore bodies of different sizes are NE trending and SE dipping.The constituent minerals of the ores mainly include pyrite,chalcopyrite,native gold,electrum,argentite,matildite,hematite,quartz and calcite.The ores are characterized by metasomatic dissolution structure,as well as veined and brecciated structures.The ore-forming process is divided into four stages,namely quartz-,pyrite-,polymetallic-and carbonate stages.Study on fluid inclusion shows that the deposit is composed of gas-liquid two-phase inclusions (Ⅰ) and three-phase inclusions containing CO2 (Ⅱ),and that the former dominates.The homogenization temperature is 259.6℃-373.7℃ ; the salinity of three-phase inclusions containing CO2is 5.77%-9.84% (NaCl) ; the salinity of gas-liquid two-phase inclusions is 6.58%-8.54% (NaCl) ; and the estimated ore-forming pressure is 55.2-82.2 MPa.According to the nonlinear relationship between the depth and pressure of the fluid in the fracture zone,the ore-forming depth of the Qilishan gold deposit is calculated as 5.95-7.14 km.It is preliminarily determined that the deposit is a mesophilic and hypothermal gold deposit.