期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of Silicon on Arsenic Concentration and Speciation in Different Rice Tissues 被引量:5
1
作者 LI Gang ZHENG Maozhong +2 位作者 TANG Jianfeng SHIM Hojae CAI Chao 《Pedosphere》 SCIE CAS CSCD 2018年第3期511-520,共10页
Rice is a major source of inorganic arsenic(As) exposure for billions of people worldwide. Therefore, strategies to reduce As accumulation in rice should be adopted. Silicon(Si) application can effectively mitigate As... Rice is a major source of inorganic arsenic(As) exposure for billions of people worldwide. Therefore, strategies to reduce As accumulation in rice should be adopted. Silicon(Si) application can effectively mitigate As accumulation in rice. In this study, a pot experiment was performed to investigate the effect of Si on As speciation and distribution in different rice tissues. The results showed that Si addition significantly increased As and Si concentrations in soil solution and Si concentration in iron plaque formed around rice root surface, whereas As in the iron plaque was significantly decreased. Total As concentrations in the stem, leaf, husk, and brown rice were remarkably decreased by 51.9%, 31.9%, 33.8%, and 24.1%, respectively, after Si addition, and inorganic As concentrations were reduced by 52.3%, 35.5%, 50.1%, and 20.1%, respectively. Moreover, both dimethylarsinic acid concentration and percentage in rice grain were significantly elevated by Si application. Therefore, Si application is promising as a way to mitigate inorganic As accumulation in rice and to reduce consumer health risk. 展开更多
关键词 arsenic accumulation CONTAMINATION dimethylarsinic acid health risk inorganic arsenic iron plaque rice grain root surface
原文传递
Novel Co_3O_4 Nanoparticles/Nitrogen-Doped Carbon Composites with Extraordinary Catalytic Activity for Oxygen Evolution Reaction(OER) 被引量:4
2
作者 Xiaobing Yang Juan Chen +4 位作者 Yuqing Chen Pingjing Feng Huixian Lai Jintang Li Xuetao Luo 《Nano-Micro Letters》 SCIE EI CAS 2018年第1期137-147,共11页
Herein, Co_3O_4 nanoparticles/nitrogen-doped carbon(Co_3O_4/NPC) composites with different structures were prepared via a facile method. Structure control was achieved by the rational morphology design of ZIF-67 precu... Herein, Co_3O_4 nanoparticles/nitrogen-doped carbon(Co_3O_4/NPC) composites with different structures were prepared via a facile method. Structure control was achieved by the rational morphology design of ZIF-67 precursors, which were then pyrolyzed in air to obtain Co_3O_4/NPC composites. When applied as catalysts for the oxygen evolution reaction(OER), the M-Co_3O_4/NPC composites derived from the flower-like ZIF-67 showedsuperior catalytic activities than those derived from the rhombic dodecahedron and hollow spherical ZIF-67. The former M-Co_3O_4/NPC composite displayed a small overpotential of 0.3 V, low onset potential of 1.41 V, small Tafel slope of 83 m V dec^(-1), and a desirable stability.(94.7% OER activity was retained after 10 h.) The excellent performance of the flower-like M-Co_3O_4/NPC composite in the OER was attributed to its favorable structure. 展开更多
关键词 Co3O4 nanoparticles Nitrogen-doped carbon ZIF-67 CATALYTIC Oxygen evolution reaction(OER)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部