期刊文献+
共找到380篇文章
< 1 2 19 >
每页显示 20 50 100
Milk fat globule membrane supplementation protects againstβ-lactoglobul-ininduced food allergy in mice via upregulation of regulatory T cells and enhancement of intestinal barrier in a microbiota-derived short-chain fatty acids manner 被引量:1
1
作者 Han Gong Tiange Li +3 位作者 Dong Liang Jingxin Gao Xiaohan Liu Xueying Mao 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期124-136,共13页
Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects ... Milk fat globule membrane(MFGM),which contains abundant glycoproteins and phospholipids,exerts beneficial effects on intestinal health and immunomodulation.The aim of this study was to evaluate the protective effects and possible underlying mechanisms of MFGM on cow’s milk allergy(CMA)in aβ-lactoglobulin(BLG)-induced allergic mice model.MFGM was supplemented to allergic mice induced by BLG at a dose of 400 mg/kg body weight.Results demonstrated that MFGM alleviated food allergy symptoms,decreased serum levels of lipopolysaccharide,pro-inflammatory cytokines,immunoglobulin(Ig)E,Ig G1,and Th2 cytokines including interleukin(IL)-4,while increased serum levels of Th1 cytokines including interferon-γand regulatory T cells(Tregs)cytokines including IL-10 and transforming growth factor-β.MFGM modulated gut microbiota and enhanced intestinal barrier of BLG-allergic mice,as evidenced by decreased relative abundance of Desulfobacterota,Rikenellaceae,Lachnospiraceae,and Desulfovibrionaceae,while increased relative abundance of Bacteroidetes,Lactobacillaceae and Muribaculaceae,and enhanced expressions of tight junction proteins including Occludin,Claudin-1 and zonula occludens-1.Furthermore,MFGM increased fecal short-chain fatty acids(SCFAs)levels,which elevated G protein-coupled receptor(GPR)43 and GPR109A expressions.The increased expressions of GPR43 and GPR109A induced CD103+dendritic cells accumulation and promoted Tregs differentiation in mesenteric lymph node to a certain extent.In summary,MFGM alleviated CMA in a BLG-induced allergic mice model through enhancing intestinal barrier and promoting Tregs differentiation,which may be correlated with SCFAs-mediated activation of GPRs.These findings suggest that MFGM may be useful as a promising functional ingredient against CMA. 展开更多
关键词 Cow’s milk allergy Milk fat globule membrane Gut microbiota Short-chain fatty acid G protein-coupled receptor Regulatory T cell
下载PDF
Dynamic changes in physicochemical property,biogenic amines content and microbial diversity during the fermentation of Sanchuan ham 被引量:2
2
作者 Zhongai Chen Hong Chen +4 位作者 Huan Du Cong Chen Kaixiang Lu Qiaoli Xue Yongjin Hu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期506-516,共11页
Sanchuan ham is appreciated in Yunnan Province,China,for its characteristic flavor and taste,while the microbial community structure and biogenic amines content remain unclear during fermentation processes.In this stu... Sanchuan ham is appreciated in Yunnan Province,China,for its characteristic flavor and taste,while the microbial community structure and biogenic amines content remain unclear during fermentation processes.In this study,we explored the physicochemical property,biogenic amines concentration and microbial diversity of external and internal Sanchuan ham by high-throughput sequencing during the processing of Sanchuan ham.Results showed that the nitrite remained at a stable level of 0.15 mg/kg which was significantly lower than the national health standard safety level of 20 mg/kg.In addition,compared with fresh hams,the content of total free amino acids in ripe Sanchuan ham has grown 14 folds;sour and bitter were the main tastes of Sanchuan ham.Notably,the concentration of cadaverine was the highest of all biogenic amines during the entire fermentation period.At the bacterial phyla level,Firmicutes and Actinobacteria were the two main phyla,while at the genus level,Staphylococcus was a significant strain throughout the whole fermentation.Moreover,the dry stage has a great impact on the succession change of microbial community structure.Simultaneously,the change trends and composition of bacteria in the interior have slight discrepancies with those of the exterior of Sanchuan ham. 展开更多
关键词 Sanchuan ham Nitrite cont ent Free amino acids CADAVERINE STAPHYLOCOCCUS
下载PDF
Emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate obtained by Corolase PP under high hydrostatic pressure 被引量:1
3
作者 Haining Guan Chunmei Feng +3 位作者 Min Ren Xiaojun Xu Dengyong Liu Xiaoqin Diao 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1271-1278,共8页
Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydro... Enzymatic hydrolysis of proteins can enhance their emulsifying properties and antioxidant activities.However,the problem related to the hydrolysis of proteins was the generation of the bitter taste.Recently,high hydrostatic pressure(HHP)treatment has attracted much interest and has been used in several studies on protein modification.Hence,the study aimed to investigate the effects of enzymatic hydrolysis by Corolase PP under different pressure treatments(0.1,100,200,and 300 MPa for 1-5 h at 50℃)on the emulsifying property,antioxidant activity,and bitterness of soybean protein isolate hydrolysate(SPIH).As observed,the hydrolysate obtained at 200 MPa for 4 h had the highest emulsifying activity index(47.49 m^(2)/g)and emulsifying stability index(92.98%),and it had higher antioxidant activities(44.77%DPPH free radical scavenging activity,31.12%superoxide anion radical scavenging activity,and 61.50%copper ion chelating activity).At the same time,the enhancement of emulsion stability was related to the increase of zeta potential and the decrease of mean particle size.In addition,the hydrolysate obtained at 200 MPa for 4 h had a lower bitterness value and showed better palatability.This study has a broad application prospect in developing food ingredients and healthy foods. 展开更多
关键词 Soybean protein isolate High hydrostatic pressure EMULSIFICATION ANTIOXIDANT Bitter taste
下载PDF
D-Psicose intake exacerbates dextran sulfate sodium-induced colitis in mice through alteration in the gut microbiota and dysfunction of mucosal barrier 被引量:1
4
作者 Xuejiao Zhang Ang Li +5 位作者 Yuanyifei Wang Jin Wang Bowei Zhang Yan Zhang Jingmin Liu Shuo Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期173-182,共10页
D-Psicose,as a low-calorie rare sugar,has attracted a lot of attention in recent years for alternating to sucrose.The anti-obesity effect of D-psicose has been extensively confirmed in previous studies,however,the imp... D-Psicose,as a low-calorie rare sugar,has attracted a lot of attention in recent years for alternating to sucrose.The anti-obesity effect of D-psicose has been extensively confirmed in previous studies,however,the impact of D-psicose on colitis remains vague.Here,we firstly evaluated the effect of the D-psicose prophylactic intervention on dextran sulfate sodium-induced colitis in C57BL/6 mice.The pathological symptoms,inflammatory cytokines levels,gut microbiota composition,short chain fatty acids(SCFAs)production and colonic barrier integrity were comprehensively evaluated.The results confirmed that D-psicose intervention aggravated colitis,characterized by the exacerbation of colon shortening,increase of colonic inflammatory infiltration,and marked exaltation of disease activity indices and IL-6,IL-1βand TNF-αlevels.Further,the dysfunction of gut microbiota was identified in the psicose group.The abundance of pro-inflammatory bacteria Lachnospiraceae_NK4A136_group was significantly up-regulated while the abundance of probiotics Akkermansia and Lactobacillus were significantly down-regulated in the psicose group compared to the model group.Moreover,the production of SCFAs was suppressed in the psicose group,accompanied by a decrease in the level of mucin 2(Muc-2).Collectively,the underlying mechanism of the exacerbation of colitis by D-psicose intervention might be attributed to microbiota dysfunction accompanied by the reduction of SCFAs,which leads to the damage of the mucosal barrier and the intensifi cation of inflammatory invasion. 展开更多
关键词 D-Psicose COLITIS Gut microbiota Short chain fatty acids Mucin 2
下载PDF
Investigation on taste characteristics and sensory perception of soft-boiled chicken during oral processing based on electronic tongue and electronic nose 被引量:1
5
作者 Na Xu Xianming Zeng +3 位作者 Peng Wang Xing Chen Xinglian Xu Minyi Han 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期313-326,共14页
The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual... The sensory perception of food is a dynamic process,which is closely related to the release of flavor substances during oral processing.It’s not only affected by the food material,but also subjected to the individual oral environment.To explore the oral processing characteristics of soft-boiled chicken,the sensory properties,texture,particle size,viscosity,characteristic values of electronic nose and tongue of different chicken samples were investigated.The correlation analysis showed that the physical characteristics especially the cohesiveness,springiness,resilience of the sample determined oral processing behavior.The addition of chicken skin played a role in lubrication during oral processing.The particle size of the bolus was heightened at the early stage,and the fluidity was enhanced in the end,which reduced the chewing time to the swallowing point and raised the aromatic compounds signal of electronic nose.But the effect of chicken skin on chicken thigh with relatively high fat content,was opposite in electronic nose,which had a certain masking effect on the perception of umami and sweet taste.In conclusion,fat played a critical role in chicken oral processing and chicken thigh had obvious advantages in comprehensive evaluation of soft-boiled chicken,which was more popular among people. 展开更多
关键词 Oral processing CHICKEN Electronic tongue Electronic nose
下载PDF
Hypoglycemic mechanism of Tegillarca granosa polysaccharides on type 2 diabetic mice by altering gut microbiota and regulating the PI3K-akt signaling pathwaye 被引量:1
6
作者 Qihong Jiang Lin Chen +5 位作者 Rui Wang Yin Chen Shanggui Deng Guoxin Shen Shulai Liu Xingwei Xiang 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期842-855,共14页
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2... Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical. 展开更多
关键词 Tegillarca granosa polysaccharide Type 2 diabetes mellitus Glycolipid metabolism PI3K/Akt signaling pathway
下载PDF
Variation of microbiological and small molecule metabolite profiles of Nuodeng ham during ripening by high-throughput sequencing and GC-TOF-MS
7
作者 Cong Li Yingling Zou +5 位作者 Guozhou Liao Zijiang Yang Dahai Gu Yuehong Pu Changrong Ge Guiying Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2187-2196,共10页
The internal microbial diversity and small molecular metabolites of Nuodeng ham in different processing years(the first,second and third year sample)were analyzed by high-throughput sequencing technology and gas chrom... The internal microbial diversity and small molecular metabolites of Nuodeng ham in different processing years(the first,second and third year sample)were analyzed by high-throughput sequencing technology and gas chromatography-time of flight mass spectrography(GC-TOF-MS)to study the effects of microorganisms and small molecular metabolites on the quality of ham in different processing years.The results showed that the dominant bacteria phyla of Nuodeng ham in different processing years were Proteobacteria and Firmicutes,the dominant fungi phyla were Ascomycota and Basidiomycota,while Staphylococcus and Aspergillus were the dominant bacteria and fungi of Nuodeng ham,respectively.Totally,252 kinds of small molecular metabolites were identified from Nuodeng ham in different processing years,and 12 different metabolites were screened through multivariate statistical analysis.Further metabolic pathway analysis showed that 23 metabolic pathways were related to ham fermentation,of which 8 metabolic pathways had significant effects on ham fermentation(Impact>0.01,P<0.05).The content of L-proline,phenyllactic acid,L-lysine,carnosine,taurine,D-proline,betaine and creatine were significantly positively correlated with the relative abundance of Staphylococcus and Serratia,but negatively correlated with the relative abundance of Halomonas,Aspergillus and Yamadazyma. 展开更多
关键词 Nuodeng ham Microbial diversity Small molecule metabolites High-throughput sequencing Gas chromatography-time of flight mass spectrography
下载PDF
2-O-β-D-Glucopyranosyl-L-ascorbic acid,an ascorbic acid derivative isolated from the fruits of Lycium barbarum L.,ameliorates high fructose-induced neuroinflammation in mice:involvement of gut microbiota and leaky gut
8
作者 Wei Dong Yujia Peng +9 位作者 Guijie Chen Zhiyong Xie Weiqi Xu Wangting Zhou Jia Mi Lu Lu Yi Sun Xiaoxiong Zeng Youlong Cao Yamei Yan 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期241-253,共13页
Western diet(rich in highly refined sugar and fat)can induce a range of metabolic dysfunctions in animals and humans,including neuroinflammation and cognitive function decline.Neuroinflammation and cognitive impairmen... Western diet(rich in highly refined sugar and fat)can induce a range of metabolic dysfunctions in animals and humans,including neuroinflammation and cognitive function decline.Neuroinflammation and cognitive impairment,two critical pathological characteristics of Alzheimer’s disease,have been closely associated with microbial alteration via the gut-brain axis.Thus,the present study aimed to investigate the influence of 2-O-β-D-glucopyranosyl-L-ascorbic acid(AA-2βG)isolated from the fruits of Lycium barbarum on preventing the high-fructose diet(HFrD)induced neuroinflammation in mice.It was found that AA-2βG prevented HFr D-induced cognitive deficits.AA-2βG also predominantly enhanced the gut barrier integrity,decreased lipopolysaccharide entry into the circulation,which subsequently countered the activation of glial cells and neuroinflammatory response.These beneficial effects were transmissible by horizontal fecal microbiome transplantation,transferring from AA-2βG fed mice to HFr D fed mice.Additionally,AA-2βG exerted neuroprotective effects involving the enrichment of Lactobacillus and Akkermansia,potentially beneficial intestinal bacteria.The present study provided the evidence that AA-2βG could improve indices of cognition and neuroinflammmation via modulating gut dybiosis and preventing leaky gut.As a potential functional food ingredient,AA-2βG may be applied to attenuate neuroinflammation associated with Western-style diets. 展开更多
关键词 Neuroinfl ammation Gut microbiota Leaky gut Lipopolysaccharide Fecal microbiome transplantation 2-O-β-D-Glucopyranosyl-L-ascorbic acid
下载PDF
Temperature-Induced Unfolding Pathway of Staphylococcal Enterotoxin B:Insights from Circular Dichroism and Molecular Dynamics Simulation
9
作者 LIU Ji ZHANG Shiyu +1 位作者 ZENG Yu DENG Yi 《食品科学》 EI CAS CSCD 北大核心 2024年第18期55-76,共22页
In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re... In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes. 展开更多
关键词 staphylococcal enterotoxin B circular dichroism molecular dynamics simulations temperature-induced unfolding
下载PDF
Characterization of blueberry exosome-like nanoparticles and miRNAs with potential cross-kingdom human gene targets
10
作者 Yangfan Leng Liubin Yang +2 位作者 Siyi Pan Leilei Zhan Fang Yuan 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期869-878,共10页
Edible plant derived exosome-like nanoparticles(ELNs)have been shown to have multiple nutraceutical functions.However,the diversity of plant materials makes the plant derived ELN study challenging.More efforts are sti... Edible plant derived exosome-like nanoparticles(ELNs)have been shown to have multiple nutraceutical functions.However,the diversity of plant materials makes the plant derived ELN study challenging.More efforts are still needed to explore the feasible isolation methods of edible plant derived ELNs and the possible roles of food-derived ELNs in improving human health.In this study,a size exclusion chromatography based method was compared with the traditional ultracentrifugation method to isolate blueberry derived ELNs(B-ELNs),and the miRNA profile of B-ELNs was analyzed by high-throughput sequencing.A total of 36 miRNAs were found to be enriched in B-ELNs compared with berry tissue,and their potential cross-kingdom human gene targets were further predicted.Results showed that size exclusion chromatography was effective for B-ELN isolation.The most abundant miRNAs in B-ELNs mainly belonged to the miR166 family and miR396 family.Target gene prediction indicated that B-ELNs could potentially regulate pathways related to the human digestive system,immune system and infectious diseases. 展开更多
关键词 Edible plant derived exosomes-like nanoparticles Size exclusion chromatography miRNA Target gene prediction BLUEBERRY
下载PDF
Evolution of free amino acids, biogenic amines and volatile compounds in fermented sausages inoculated with Lactiplantibacillus plantarum and Staphylococcus simulans
11
作者 Xuefei Shao Huhu Wang +3 位作者 Xiangyu Song Mingyuan Huang Jian Sun Xinglian Xu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3642-3651,共10页
Lactic acid bacteria and coagulase-negative staphylococci play an important role in the production of fermented sausages,such as inhibiting the growth of undesirable bacteria and antioxidant.In this study,the effects ... Lactic acid bacteria and coagulase-negative staphylococci play an important role in the production of fermented sausages,such as inhibiting the growth of undesirable bacteria and antioxidant.In this study,the effects of inoculation with different starter cultures(Lactiplantibacillus plantarum HN108 and Staphylococcus simulans NJ209)on the free amino acids(FAAs),biogenic amines(BAs)and volatile compounds of fermented sausages were investigated using an amino acid analyzer,ultra performance liquid chromatography and gas chromatography-ion mobility spectrometry,respectively.The pH and carbonyl content of the inoculated group was significantly lower than those in the control group(P<0.05).L.plantarum HN108 significantly reduced the content of FAAs and BAs in fermented sausage production(P<0.05),while S.simulans NJ209 promoted the formation of FAAs(especially bitter amino acids)and exhibited slight BAs-reducing activity.In addition,L.plantarum HN108 promoted the formation of volatile compounds such as ketones,alcohols and alkenes in sausages.In conclusion,L.plantarum HN108 could contribute to reducing the content of putrescine and tyramine and forming the desirable flavor compounds in fermented sausages.Thus,L.plantarum HN108 is expected to be a starter culture that can improve the safety and flavor of fermented sausages. 展开更多
关键词 Fermented sausages Starter cultures Free amino acids Biogenic amines Volatile compounds
下载PDF
Molecular mechanisms of bitterness and astringency in the oral cavity induced by soyasaponin
12
作者 Lijie Zhu Yueying Pan +3 位作者 Yingyan Li Yingjie Zhou He Liu Xiuying Liu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3424-3433,共10页
The interaction mechanism between soyasaponin(Ssa)and bitter receptors/mucin,as well as the saliva interface behavior of Ssa,were investigated to explore the presentation mechanism of Ssa bitterness and astringency(BA... The interaction mechanism between soyasaponin(Ssa)and bitter receptors/mucin,as well as the saliva interface behavior of Ssa,were investigated to explore the presentation mechanism of Ssa bitterness and astringency(BA).Strong bitterness arising from high Ssa concentrations(0.5–1.5 mg/mL)had a masking effect on astringency.At Ssa concentrations of 1.0–1.5 mg/mL,Ssa micelles altered the structure of mucin,exposing its internal tryptophan to a more polar environment.At Ssa concentrations of 0.05–1.50 mg/mL,its reaction with mucin increased the aggregation of particles in artificial saliva,which reduced the frictional lubricating properties of oral saliva.Ssa-mucin interactions affected the salivary interfacial adsorption layer,and their complexes synergistically reduced the interfacial tension.Ssa monomers and soyasapogenols bind to bitter receptors/mucin via hydrogen bonding and hydrophobic interactions.Class A Ssa binds more strongly than class B Ssa,and thus likely presents a higher BA.In conclusion,Ssa interacts with bitter receptors/mucin causing conformational changes and aggregation of salivary mucin,resulting in diminished frictional lubricating properties of oral saliva.This,in turn,affects taste perception and gustatory transmission. 展开更多
关键词 SOYASAPONIN Bitterness and astringency Bitter taste receptor MUCIN
下载PDF
Effect of exogenous free N^(ε)-(carboxymethyl)lysine on diabetes-associated cognitive dysfunction:neuroinflammation,and metabolic disorders
13
作者 Huang Zhang Lan Mo +8 位作者 Xi Chen Mei Li Maiquan Li Yang Xu Maomao Zeng Zhiyong He Qingwu Shen Jie Chen Wei Quan 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2970-2981,共12页
Diabetes-associated cognitive dysfunction has already been attracted considerable attention.Advanced glycation end products(AGEs)from daily diets are thought to be a vital contributor to the development of this diseas... Diabetes-associated cognitive dysfunction has already been attracted considerable attention.Advanced glycation end products(AGEs)from daily diets are thought to be a vital contributor to the development of this diseases.However,the effect of one of the best-characterized exogenous AGEs N^(ε)-(carboxymethyl)lysine(CML)on cognitive function is not fully reported.In the present study,diabetical Goto-Kakizaki(GK)rats were treated with free CML for 8-weeks.It was found that oral consumption of exogenous CML significantly aggravated diabetes-associated cognitive dysfunction in behavioral test.In details,exogenous CML increased levels of oxidative stress,promoted the activation of glial cells in the brain,up-regulated the release of inflammatory cytokines interleukin-6,inhibited the protein expression of the brain-derived neurotrophic factor and thus led to neuroinflammation.Furthermore,exogenous CML promoted the amyloidogenesis in the brain of GK rats,and inhibited the expression of GLUT4.Additionally,several tricarboxylic acid cycle and glutamate-glutamine/γ-aminobutyric acid cycle intermediates including pyruvate,succinic acid,glutamine,glutamate were significantly changed in brain of GK rats treated with exogenous free CML.In conclusion,exogenous free CML is a potentially noxious compounds led to aggravated diabetes-associated cognitive dysfunction which could be possibly explained by its effects on neuroinflammation,energy and neurotransmitter amino acid homeostasis. 展开更多
关键词 Diabetes Cognitive dysfunction N^(ε)-(carboxymethyl)lysine NEUROINFLAMMATION METABOLOMIC
下载PDF
Research advances on encapsulation of probiotics with nanomaterials and their repair mechanisms on intestinal barriers
14
作者 Xiaochen Wang Mengxi Yu +7 位作者 Jianming Ye Ting Liu Lijuan Jian Xiaoyan Zheng Yuan Wang Wei Song Yane Luo Tianli Yue 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3095-3109,共15页
Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile sa... Probiotics participate in various physiological activities and contribute to body health.However,their viability and bioefficacy are adversely affected by gastrointestinal harsh conditions,such as gastric acid,bile salts and various enzymes.Fortunately,encapsulation based on various nanomaterials shows tremendous potential to protect probiotics.In this review,we introduced some novel encapsulation technologies involving nanomaterials in view of predesigned stability and viability,selective adhesion,smart release and colonization,and efficacy exertion of encapsulated probiotics.Furthermore,the interactions between encapsulated probiotics and the gastrointestinal tract were summarized and analyzed,with highlighting the regulatory mechanisms of encapsulated probiotics on intestinal mechanical barrier,chemical barrier,biological barrier and immune barrier.This review would benefit the food and pharmaceutical industries in preparation and utilization of multifunctional encapsulated probiotics. 展开更多
关键词 PROBIOTICS ENCAPSULATION Environment-responsive release Repair mechanisms Selective colonization
下载PDF
The efficiency and safety evaluation of hemoglobin hydrolysate as a non-heme iron fortifier
15
作者 Dejiang Xue Shuai Jiang +3 位作者 Miao Zhang Kai Shan RenéLametsch Chunbao Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期999-1010,共12页
Hemoglobin hydrolysate is derived from the enzymatic degradation of hemoglobin.This work aimed to evaluate whether hemoglobin hydrolysate promotes the absorption of non-heme iron and the safety of absorbed iron in mic... Hemoglobin hydrolysate is derived from the enzymatic degradation of hemoglobin.This work aimed to evaluate whether hemoglobin hydrolysate promotes the absorption of non-heme iron and the safety of absorbed iron in mice by analyzing the iron binding content,iron circulation,and liver homeostasis.We found that hemoglobin hydrolysate promoted the absorption of non-heme iron with high efficiency in duodenum by spontaneously binding non-heme iron during digestion,and increased hepatic iron content by up-regulating divalent metal transporter 1,zinc transporter 14,but hepatic iron content only increased at 3 weeks.Duodenal iron entered the blood through ferroportin without restriction at 3 weeks,and excessive iron entered the liver and then affected the hepatocyte membranes permeability and lipid synthesis through oxidative stress.With the prolongation of dietary intervention,the up-regulated hepcidin acted on the ferroportin to restrict excess iron from entering the blood,and then the hepatic homeostasis recovered.In addition,hemoglobin hydrolysate enhanced the hepatic antioxidant capacity.Taken together,hemoglobin hydrolysate has a strong ability to promote the absorption of non-heme iron in vivo,and the absorbed iron is relatively safe due to the regulation of hepcidin. 展开更多
关键词 Hemoglo bin hydrolysate Non-heme iron Absorption Liver homeostasis HEPCIDIN
下载PDF
Polysaccharide-rich extract of Potentilla anserina ameliorates nonalcoholic fatty liver disease in free fatty acid-induced HepG2 cells and high-fat/sugar diet-fed mice
16
作者 Xiujun Lin Yimei Zheng +6 位作者 Yingying Yan Hongting Deng Shunxin Wang Yuanju He Yuting Tian Wenhui Zhang Hui Teng 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3351-3360,共10页
Potentilla anserina L.(PA)belongs to the Rosaceae family,is a common edible plant in the Qinghai-Tibet Plateau areas of China.This study elucidates the mechanism upon which crude polysaccharide of PA(PAP)on fat accumu... Potentilla anserina L.(PA)belongs to the Rosaceae family,is a common edible plant in the Qinghai-Tibet Plateau areas of China.This study elucidates the mechanism upon which crude polysaccharide of PA(PAP)on fat accumulation in HepG2 cells stimulated by oleic acid(OA)and high fat high sugar induced mice.The result revealed that PAP inhibited lipid accumulation in obese mice and ameliorated the degree of damage in OA-induced HepG2 cells.Specifically,compared to the control group,the TG and TC levels were decreased in cells and mice serum,the aspartate transaminase and alamine aminotransferase contents were declined in liver of obese mice by PAP treatment.The expressions of adipogenic genes of SREBP-1c,C/EBPα,PPARγ,and FAS were inhibited after PAP treatment.Moreover,PAP increased the mRNA levels of CPT-1 and PPARα,which were involved in fatty acid oxidation.The present results indicated the PAP could alleviate the damage of liver associated with obesity and PAP treatment might provide a dietary therapeutic option for the treatment of hyperlipidemia. 展开更多
关键词 Potentilla anserina L. Non-alcoholic fatty liver disease Lipid accumulation HepG2 cells High fat diet
下载PDF
Diet with high content of advanced glycation end products induces oxidative stress damage and systemic inflammation in experimental mice: protective effect of peanut skin procyanidins
17
作者 Li Zhao Xingxing Zhang +4 位作者 Langzhi He Yubing Li Yue Yu Qun Lu Rui Liu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3570-3581,共12页
Non-enzymatic glycation reaction in food can produce diet-derived advanced glycation end products(dAGEs),which have potential health risks.Thus,it is of great significance to find efficient substances to improve the n... Non-enzymatic glycation reaction in food can produce diet-derived advanced glycation end products(dAGEs),which have potential health risks.Thus,it is of great significance to find efficient substances to improve the negative effects induced by dAGEs on human health.This study investigated the intervening effects of peanut skin procyanidins(PSP)on the dAGEs-induced oxidative stress and systemic inflammation in experimental mice model.Results showed that the accumulation of AGEs in serum,liver,and kidney was significantly increased after mice were fed dAGEs(P<0.05).The expression of advanced glycation product receptor(RAGE)was also significantly increased in liver and kidney(P<0.05).PSP could not only effectively reduce the accumulation of AGEs in serum,liver and kidney of mice,but also reduce the expression of RAGE in liver and kidney of mice.And the levels of pro-inflammatory cytokines interleukin-6(IL-6),tumor necrosis factor(TNF-α),and IL-1βin serum of mice were significantly decreased(P<0.05),while the levels of antiinflammatory factor IL-10 were increased,and the inflammatory injury in mice was improved.In addition,the levels of superoxide dismutase(SOD),glutathione(GSH),catalase(CAT)in liver and kidney of mice were increased(P<0.05),and the level of malondialdehyde(MDA)was decreased(P<0.05),which enhanced the antioxidant capacity of mice in vivo,and improved the oxidative damage of liver and kidney.Molecular docking technique was used to confirm that the parent compound of procyanidins and its main metabolites,such as 3-hydroxyphenylacetic acid,could interact with RAGE,which might inhibit the activation of nuclear transcription factor(NF-κB),and ultimately reduce oxidative stress and inflammation in mice. 展开更多
关键词 Peanut skin procyanidins Diet-derived advanced glycation end products Oxidative stress INFLAMMATION Interaction
下载PDF
Changes in physicochemical characteristics of wheat flour and quality of fresh wet noodles induced by microwave treatment
18
作者 Jian Zhang Xuejie Li +5 位作者 Xiujuan Ren Yanxia An Xiaoyan Song Yang Zhao Yaqing Wen Weifeng Zhang 《Grain & Oil Science and Technology》 CAS 2024年第3期177-185,共9页
Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the... Fresh wet noodles(FWN) are popular staple foods due to its unique chewy texture and favorable taste. However,the development of FWN is limited by its short shelf life and high browning rate. It has been found that the quantity of original microorganisms in wheat flour produced by traditional method is relatively high, which is detrimental to the processing quality and storage stability of FWN. Consequently, it becomes imperative to decrease microorganisms in wheat flour. Microwave treatment has been regarded as a promising method in the food industry due to its potential in inhibiting microbial growth and inactivating enzymes without causing adverse effect on the food quality. This study aims to investigate the effects of microwave treatment of wheat kernels under different powers(1, 2, 3, 4, 5 kW) on the physicochemical properties of wheat flour and the quality of FWN. The results revealed that microwave treatment had a significant effect on microbial inhibition and enzyme inactivation, wherein the total plate count(TPC) and yeast and mold counts(YMC) decreased by 0.87 lg(CFU/g) and 1.13 lg(CFU/g) respectively, and PPO activity decreased from 11.40 U to 6.31 U. The dough quality properties, such as stability, extensibility, and starch viscosity, improved significantly under different microwave conditions. Confocal laser scanning microscopy(CLSM) images indicated that starch and proteins aggregated gradually in treated flour, altering rheological properties of dough. From the results of scanning electron microscopy(SEM), microwave treatment led to the appearance of disrupted structure in the gluten proteins, but the secondary structure of proteins altered slightly. Rheological properties of dough confirmed that the microwave treatment greatly affected processing characteristics of wheat flour products, with significant advantageous consequences on product quality, especially for textural properties of FWN. Furthermore, FWN darkening could be inhibited noticeably after microwave treatment, thereby prolonging its shelf life. Therefore, microwave treatment could thus be an effective, practical technology to produce low-bacterial flour and thereby enhance its product quality. 展开更多
关键词 Microwave treatment STERILIZATION Confocal laser scanning microscopy Rheological properties Protein structures
下载PDF
Improving Semi-Dried Brown Rice Noodle Quality via Mixed Fermentation of Lactobacillus and Yeast
19
作者 LUO Lijuan CHENG Zixuan +6 位作者 QIAO Fan XIONG Gangping LIU Jun HUANG Qingming LI Jiangtao LIN Qinlu LIU Chun 《Rice science》 SCIE CSCD 2024年第5期489-493,I0001-I0005,共10页
To address the coarse texture and poor cooking quality of brown rice flour,we employed fermentation using lactobacillus and yeast in varying proportions.The fermented flour from early indica rice Pear 13 was then proc... To address the coarse texture and poor cooking quality of brown rice flour,we employed fermentation using lactobacillus and yeast in varying proportions.The fermented flour from early indica rice Pear 13 was then processed into semi-dried brown rice noodles. 展开更多
关键词 DRIED COOKING YEAST
下载PDF
Mitigation of polycyclic aromatic hydrocarbons(PAHs)in roasted beef patties by cold plasma treatment and products quality evaluation
20
作者 Yuke Hou Yangjian Hu +8 位作者 Min Li Jiahui Nong Fengyuan Xie Yuhan Fan Jianhao Zhang Xianming Zeng Minyi Han Xinglian Xu Xia Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2993-3005,共13页
The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patti... The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patties,to investigate their inhibition and degradation capacity on PAHs.With 5 different cooking oils and fats addition,the inhibition mechanism of in-package cold plasma(ICP)pretreatment was explored from the aspect of raw patties fatty acids composition variation.The results of principal component analysis showed that the first two principal components accounted for more than 80%of the total variation in the original data,indicating that the content of saturated fatty acids was significantly positively correlated with the formation of PAHs.ICP pretreatment inhibited the formation of PAHs by changing the composition of fatty acids,which showed that the total amount of polyunsaturated fatty acids decreased and the total amount of monounsaturated fatty acids increased.Sensory discrimination tests demonstrated there were discernable differences between 2 CP treated samples and the controls,utilization of the ICP pretreatment in meat products processing was expected to achieve satisfying eating quality.In conclusion,CP treatment degraded PAHs through stepwise ring-opening oxidation in 2 reported pathways,the toxicity of PAHs contaminated products was alleviated after CP treatment. 展开更多
关键词 Roasted beef Polycyclic aromatic hydrocarbons Cold plasma Mitigation mechanism Product quality evaluation
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部