Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of ...Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of inertinite,changes in the coal-forming environment and control characteristics of wildfire.Research has shown that there are two forms of inertinite sources in the study area.Alongside typical fusinization,wildfire events also play a substantial role in inertinite formation.There are significant fluctuations in the coal-forming environment of samples at different depths.Coal samples were formed in dry forest swamp with low water levels and strong oxidation,which have a high inertinite content,and the samples formed in wet forest swamp and limnic showed low inertinite content.Conversely,the inertinite content of different origins does not fully correspond to the depositional environment characterized by dryness and oxidation.Nonpyrogenic inertinites were significantly influenced by climatic conditions,while pyrofusinite was not entirely controlled by climatic conditions but rather directly impacted by wildfire events.The high oxygen level was the main factor causing widespread wildfire events.Overall,the combination of wildfire activity and oxidation generates a high content of inertinite in the Middle Jurassic coal of the Ordos Basin.展开更多
In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken a...In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.展开更多
The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric ...The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation.展开更多
Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors ...Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.展开更多
Coal remote sensing technology was founded in the period of coal resources survey after the founding of People’s Republic of China.Aerophoto Grammetry&Remote Sensing Bureau of China National Administration of Coa...Coal remote sensing technology was founded in the period of coal resources survey after the founding of People’s Republic of China.Aerophoto Grammetry&Remote Sensing Bureau of China National Administration of Coal Geology was established,specializing in the application and promotion of coal remote sensing technology.With the rapid development of coal geological exploration in China,coal remote sensing technology has evolved from coal geology based survey to comprehensive survey that factors in resources,environment,ecology and so on.This paper summarizes the general situation,theories,development process,key research and future of remote sensing technology for coal mining in China.Spanning over 50 years,the history of China’s coal remote sensing technology can be divided into five stages:aero-geological mapping,coal remote sensing theory experimental research,application research and promotion,architecture planning and productionisation,“3S”technology integration and application.This paper expounds the main technical progress,application fields,major projects and major achievements in various historical periods,and points out that the coal remote sensing has entered a unified development stage of“Aviation,Aerospace and Ground”,with a focus on high-resolution remote sensing,hyperspectral remote sensing,radar remote sensing,“3S”technology integration and multi-means comprehensive exploration and evaluation.In the future,coal remote sensing technology will develop rapidly in data mass,technology integration,evaluation intelligence,integration application programming,system visualization,etc.Coal remote sensing technology has entered the industrial development from technology application.展开更多
As a hydrocarbon-rich sedimentary basin in China,the Ordos Basin has enormous potential for shale gas resources.The shale of the Upper Carboniferous Benxi Formation is rich in organic matter,however,its palaeoenvironm...As a hydrocarbon-rich sedimentary basin in China,the Ordos Basin has enormous potential for shale gas resources.The shale of the Upper Carboniferous Benxi Formation is rich in organic matter,however,its palaeoenvironment and organic matter enrichment mode are yet to be revealed.In this study,the geochemical characteristics of the shale of the Benxi Formation in the east-central part of the Ordos Basin were analyzed to investigate its palaeoenvironment.At the same time,the organic matter enrichment modes in different sedimentary facies were compared and analyzed.The results indicate that:1)the shale of the Benxi Formation was mainly deposited on the continental margin and strong terrestrial clastic input;2)the deposition period of the Benxi Formation shale had a hot and humid climate with high palaeoproductivity and local volcanic hydrothermal fluid,and a high sedimentation rate with the strong stagnant environment.The bottom water was in dysoxic conditions and a semi-saline deposition environment;3)multiple factors,such as palaeoproductivity,volcanic hydrothermal,redox conditions,and palaeosalinity interact to influence the enrichment of shale organic matter in Benxi Formation;4)the organic matter enrichment modes of continental,marine-continental transitional,and marine shales can be classified into three types:“production mode”,“hybrid mode of preservation and production”,and“preservation mode”,respectively.This study provides a reference for the organic matter enrichment mode,shale gas formation conditions,and core area evaluation in these marine-continental transitional shales,and also offers new guidance for exploration ideas for shale gas in different sedimentary facies.展开更多
Grassland is a major carbon sink in the terrestrial ecosystem. The dynamics of grassland carbon stock profoundly influence the global carbon cycle. In the published literatures so far, however, there are limited studi...Grassland is a major carbon sink in the terrestrial ecosystem. The dynamics of grassland carbon stock profoundly influence the global carbon cycle. In the published literatures so far, however, there are limited studies on the long-term dynamics and influential factors of grassland carbon stock, including soil organic carbon. In this study, spatial-temporal substitution method was applied to explore the characteristics of Medicago sativa L. (alfalfa) grassland biomass carbon and soil organic carbon density (SOCD) in a loess hilly region with different growing years and management patterns. The results demonstrated that alfalfa was the mono-dominant community during the cutting period (viz. 0-10 year). Community succession began after the abandonment of alfalfa grassland and then the important value of alfalfa in the community declined. The artificial alfalfa community abandoned for 30 years was replaced by the S. bungeana community. Accordingly, the biomass carbon density of the clipped alfalfa showed a significant increase over the time during 0-10 year. During 0-30 year, the SOCD from 0-100 cm of the soil layer of all 5 management patterns increased over time with a range between 5.300 ± 0.981 kg/m2 and 12.578 ± 0.863 kg/m2. The sloping croplands had the lowest SOCD at 5.300 ± 0.981 kg/m2 which was quite different from the abandoned grasslands growing for 30 years which exhibited the highest SOCD with 12.578 ± 0.863 kg/m2. The ecosystem carbon density of the grassland clipped for 2 years increased 0.1 kg/m2 compared with the sloping cropland, while that of the grassland clipped for 10 years substantially increased to 10.30 ± 1.26 kg/m2. Moreover, the ecosystem carbon density for abandoned grassland became 12.62± 0.50 kg/m2 at 30 years. The carbon density of the grassland undisturbed for l0 years was similar to that of the sloping cropland and the grassland clipped for 2 years. Different management patterns imposed great different effects on the accumulation of biomass carbon on artificial grasslands, whereas the ecosystem carbon density of the grassland showed a slight increase from the clipping to abandonment of grassland in general.展开更多
The eastern Hexi Corridor Belt(HCB) is located in the transitional belt among the Alxa Block,the Qilian Orogenic Belt and the North China Block. Because of its unique tectonic location, the tectonic setting, provena...The eastern Hexi Corridor Belt(HCB) is located in the transitional belt among the Alxa Block,the Qilian Orogenic Belt and the North China Block. Because of its unique tectonic location, the tectonic setting, provenance, and even the age of the sedimentary strata in the eastern HCB during the Early Paleozoic remain controversial. This study analyzes the provenance of the poorly studied Xiangshan Group, discusses its age of development and tectonic setting in the eastern HCB using a combination of petrological, geochemical and LA-ICP-MS U-Pb zircon dating methods. Based on the youngest age peaks and the fossil evidence, we suggest that the Xiangshan Group is Middle Cambrian to Late Ordovician in age. The complexity of the geochemical characteristics and associated diagrams suggests that the early stage of the Xiangshan Group developed in a passive continental margin environment, late in the backarc basin of the eastern HCB. Based on the sandstone detrital composition, whole-rock geochemistry and detrital zircon ages, we conclude that the Xiangshan Group had an early provenance that was mainly from the Qilian Block and a late provenance from the Qilian Block and the western Alxa Block. The eastern HCB and its northern and southern blocks have similar palaeontology, lithology and basement age characteristics to the South China Block. This indicates that the eastern HCB might not have formed in the intra-continental aulacogen of the North China Block during the Early Paleozoic but has a close affinity to eastern Gondwana.展开更多
It is generally accepted that the uniaxial compressive strength(UCS)and P-wave velocity of rocks tend to decrease simultaneously with increasing temperature.However,based on a great number of statistical data and syst...It is generally accepted that the uniaxial compressive strength(UCS)and P-wave velocity of rocks tend to decrease simultaneously with increasing temperature.However,based on a great number of statistical data and systematic analysis of the microstructure variation of rocks with temperature rising and corresponding propagation mechanism of elastic wave,the results show that(1)There are three different trends for the changes of UCS and P-wave velocity of sandstone when heated from room temperature(20C or 25C)to 800C:(i)Both the UCS and P-wave velocity decrease simultaneously;(ii)The UCS increases initially and then decreases,while the P-wave velocity decreases continuously;and(iii)The UCS increases initially and then fluctuates,while the P-wave velocity continuously decreases.(2)The UCS changes at room temperaturee400C,400Ce600C,and 600Ce800C are mainly attributed to the discrepancy of microstructure characteristics and quartz content,the transformation plasticity of clay minerals,and the balance between the thermal cementation and thermal damage,respectively.(3)The inconsistency in the trends of UCS and P-wave velocity changes is caused by the change of quartz content,phase transition of water and certain minerals.展开更多
The extant genus Paliurus Miller is divided into P. ramosissimus and P. spina-christi groups and is diagnostically characterized by distinctive orbicular-winged fruits with a trilocular (or often bilocular) ovary an...The extant genus Paliurus Miller is divided into P. ramosissimus and P. spina-christi groups and is diagnostically characterized by distinctive orbicular-winged fruits with a trilocular (or often bilocular) ovary and basally triveined leaves with a subentire to serrate margin. Here, structurally preserved winged fruits and associated compressed leaves of Paliurus (Paliureae, Rhamnaceae) are reported from the Middle-Upper Miocene Shengxian Formation of Tiantai, Zhejiang, eastern China. The fruits can be identified as Paliurus microcarpa Xiang-Chuan Lisp. nov., the diagnostic characters of external morphology and anatomy of which differ from those of both extant and fossil generic members; the leaves can be designated as Paliurus sp. The species based on winged fruits, P. microcarpa, might represent an ancient intermediate link exclusively known across the P. ramosissimus and P. spina-christi groups, showing a closer affinity to the P. ramosissimus group based on the resemblant smaller fruits with a narrower wing, and to the P. spina-christi group based on the similar wing structure and texture, respectively. Morphological analyses of the present and previous fossil fruit records around the world indicate that diversification of Paliurus had begun in northern transpacific regions by the Late Eocene. The macrofossil records, i.e., fruits and leaves of Paliurus globally when projected on paleoenvironmental maps in view of changing continental positions through time (from Eocene to Miocene) display that the past distribution of the genus was much wider than the present and belongs to a tropical and warm temperate realm of the Northern Hemisphere. Therefore, the modern restricted disjunction in tropical and warm temperate regions of East Asia and South Europe (even eastwards West Asia) might represent glacial refugia for some of the generic ancient lineages to survive severe cold at least since the terminal Pliocene.展开更多
The methods of nuclear magnetic resonance(NMR)spectroscopy,mercury injection porosimetry(MIP),and gas-water relative permeability(GWRP)were used to reveal the pore structure and permeability characteristics of high-ra...The methods of nuclear magnetic resonance(NMR)spectroscopy,mercury injection porosimetry(MIP),and gas-water relative permeability(GWRP)were used to reveal the pore structure and permeability characteristics of high-rank coal reservoirs in the Bide-Santang basin,western Guizhou,South China,to provide guidance for coalbed methane(CBM)exploration and exploitation and obtain direct insights for the development of CBM wells.The results indicate that the coal reservoirs in the study area are characterized by well-developed adsorption pores and poorly developed seepage pores.The bimodal NMR transverse relaxation time(T2)spectra and the mutation in the fractal characteristic of the MIP pore volume indicate poor connectivity between the adsorption pores and the seepage pores.As a result,the effective porosity is relatively low,with an average of 1.70%.The irreducible water saturation of the coal reservoir is relatively high,with an average of 66%,leading to a low gas relative permeability under irreducible water saturation.This is the main reason for the low recovery of high-rank CBM reservoirs,and effective enhanced CBM recovery technology urgently is needed.As a nondestructive and less time-consuming technique,the NMR is a promising method to quantitatively characterize the pores and fractures of coals.展开更多
The tectonic setting of the northern Alxa region during the Late Paleozoic is highly controversial.The key to resolve this controversy is to recognize the Late Paleozoic magmatic processes in the northern Alxa.In this...The tectonic setting of the northern Alxa region during the Late Paleozoic is highly controversial.The key to resolve this controversy is to recognize the Late Paleozoic magmatic processes in the northern Alxa.In this paper,we present new zircon U-Pb ages,Hf-isotopic compositions and whole-rock geochemical data of four granitoids along the Zhusileng-Hangwula Tectonic Belt in the northern Alxa region that could provide critical information about the tectonic evolution of this region.The zircon U-Pb data could be grouped as two phases:Late Devonian granite and diorite(ca.373-360 Ma),and Late Carboniferous granodiorite(ca.318 Ma).The Late Devonian granites and diorites are metaluminous to slightly peraluminous,with A/CNK and A/NK ratios of 0.90-1.11 and0.95-2.19,respectively.The Late Devonian diorites are characterized by high MgO,Cr and Ni contents and MgO#values,together with variableεHf(t)values from-1.0 to+1.3 and old TDM2 ages varied from 1283 Ma to 1426 Ma,indicating the primary magma was potentially derived from magma mixing of depleted mantle with Mesoproterozoic continental crust.Even though the Late Devonian granites yielded most positive and minor negative eHf(t)values between-1.1 to+5.7(three grains are negative)with two-stage model ages(TDM2)of 1003-1438 Ma,they display low MgO,Cr and Ni contents and MgO#values,suggesting that they were mainly derived from juvenile crustal materials,mixed with a small amount of ancient crust.The Late Carboniferous granitoids are metaluminous and medium-K calc-alkaline series,with A/CNK and A/NK ratios ranging from 0.88 to 0.95 and1.75 to 1.90,respectively.These rocks were potentially derived from juvenile crustal materials mixed with depleted mantle,as evidenced by their highεHf(t)values(+11.6 to+14.1)and young TDM2 ages(427 Ma to 586 Ma),as well as high Mg#values,and MgO,Ni and Cr contents.Our data,along with available sedimentary evidence and previous researches,indicate that the Late Devonian and Late Carboniferous rocks are arc-related granitoids under the subduction setting.The identification of arc-related granitoids in the northern Alxa region not only reveals the Late Paleozoic magmatic process in response to the subduction of Paleo Asian Ocean,but also provide significant constrains to the tectonic evolution of the Central Asian Orogenic Belt.展开更多
The geothermal fields of coal-bearing strata have become a key topic in geological research into coal and coal bed methane(CBM).Based on temperature data from 135 boreholes that penetrate the Upper Permian coal-bearin...The geothermal fields of coal-bearing strata have become a key topic in geological research into coal and coal bed methane(CBM).Based on temperature data from 135 boreholes that penetrate the Upper Permian coal-bearing strata in the Bide-Santang basin,western Guizhou,the precisions of geothermal predictions made using a geothermal gradient model and a gray sequence GM(1,1)model are analyzed and compared.The results indicate that the gray sequence GM(1,1)model is more appropriate for the prediction of geothermal fields.The GM(1,1)model is used to predict the geothermal field at three levels with depths of 500,1000,and 1500 m,as well as within the No.6,No.16,and No.27 coal seams.The results indicate that the geotemperatures of the 500 m depth level are between 21.0 and 30.0°C,indicating no heat damage;the geotemperatures of the 1000 m depth level are between 29.4 and 44.7°C,indicating the first level of heat damage;and the geotemperatures of the 1500 m depth level are between35.6 and 63.4°C,indicating the second level of heat damage.The CBM contents are positively correlated with the geotemperatures of the coal seams.The target area for CBM development is identified.展开更多
On August 10,2019,due to the effect of a rainstorm caused by Super Typhoon Lekima,a landslide occurred in Shanzao Village,China.It blocked the Shanzao stream,forming a barrier lake,and then the barrier lake burst.This...On August 10,2019,due to the effect of a rainstorm caused by Super Typhoon Lekima,a landslide occurred in Shanzao Village,China.It blocked the Shanzao stream,forming a barrier lake,and then the barrier lake burst.This is a rare natural disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.This study was built on field surveys,satellite image interpretation,the digital elevation model(DEM),engineering geological analysis and empirical regression.The purpose was to reveal the characteristics and causes of the landslide,the features and formation process of the barrier lake and the dam break flooding discharge.The results show that the volume of the landslide deposit is approximately 2.4×105 m3.The burst mode of the landslide dam is overtopping,which took only 22 minutes from the formation of the landslide dam to its overtopping.The dam-break peak flow was 1353 m3/s,and the average velocity was 2.8–3.0 m/s.This study shows that the strongly weathered rock and soil slope has low strength and high permeability under the condition of heavy rainfall,which reminds us the high risk of landslides and the importance of accurate early warning of landslides under heavy rainfalls in densely populated areas of Southeast China,as well as the severity of the disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.展开更多
China is a top world producer of coal resources with numerous coal-rich basins country-wide that also contain coalbed methane(CBM),an unconventional natural gas resource.Recent exploration of coal and CBM resources ha...China is a top world producer of coal resources with numerous coal-rich basins country-wide that also contain coalbed methane(CBM),an unconventional natural gas resource.Recent exploration of coal and CBM resources has also led to the discovery of rare,precious,and scattered metal minerals,including sandstone-type U and Ga–Ge–Li.High-grade and industrial-value deposits have been discovered in the Ordos,Junggar,and other basins across China during exploration for coal resources.Application of coordinated exploration theories and techniques in multiple energy and coal-associated ore deposits,such as coal and unconventional natural gas in coal,achieves efficient and practical exploration of natural resources.Based on the systematic study of accumulation and occurrence of coal and coal-associated mineral resources in coal basins,the basic idea of coordinated exploration for coal and coal-associated deposits is proposed,and multi-targets and multi-methods based on a coordinated exploration model of coal-associated deposits is developed.Coordinated exploration expands the main exploration objective from coal seams to coal-associated series,extending the exploration target from targeting coal only to coal-associated deposits.Entrance times for exploration are decreased to realize coordinated exploration for coal,unconventional natural gas and syngenetic/associated mineral resources in coal by implementing a’one-time approach’―one time in and out of a coal seam to minimize disturbance and time needed for extraction.According to the differences of geological background in China’s coal basins,four coordinated exploration model types,including co-exploration of coal and coal-associated unconventional natural gas,coal and solid minerals,coal and metal minerals,and coal with water resources are established.Other models discussed include a multi-target coordinated exploration model for the combination of coal,coal-associated gas,solid minerals,and metal minerals accordingly.The exploration techniques of coal and coal-associated resources include regional geological investigation and research and synthetic application of other techniques including seismic surveys,drilling,logging,and geochemical exploration.Particularly,applying the’multi-purpose drill hole’or reworking coalfield drill holes into parameter wells,adding sample testing and logging wells,determining gas-bearing layers by logging and gas content measurement,jointly measuring multiple logging parameters,sampling,and testing of coal-strata help in the exploration and evaluation of coal resources,coal-associated unconventional natural gas resources,and coal-associated element minerals.Accordingly,a system of integrated Space–Air–Ground exploration techniques for coordinated exploration of coal and coal-associated minerals is established.This includes high-resolution,hyperspectral remote-sensing technique,high-precision geophysical exploration and fast,precise drilling,testing of experimental samples,as well as coordinated exploration and determination methods of multi-target factors,multi-exploration means,multi-parameter configuration and optimization,big data fusions and interpretation techniques.In recent years,the application of this integrated system has brought significant breakthroughs in coal exploration in Inner Mongolia,Xinjiang and other provinces,discovering several large,ten-billionton coalfields,such as the Eastern Junggar and Tuha basins,and also in exploration and development of CBM from lowrank coals in Fukang,Xinjiang,discovery the Daying U Deposit in Inner Mongolia,the Junggar Ultralarge Ga Deposit,Lincang,Yunnan,and the Wulantuga,Inner Mongolia,Ge-bearing coal deposits,and the Pingshuo Ultralarge Li–Ge Deposit.展开更多
Petrographic and geochemical characteristics of the Upper Triassic sandstones in the western Ordos Basin were studied to provide insight into weathering characteristics,provenance,and tectonic implications.Petrographi...Petrographic and geochemical characteristics of the Upper Triassic sandstones in the western Ordos Basin were studied to provide insight into weathering characteristics,provenance,and tectonic implications.Petrographic features show that the sandstones are characterized by low-medium compositional maturity and textural maturity.The CIA and CIW values reveal weak and moderate weathering history in the source area.The geochemical characteristics together with palaeocurrent data show that the northwestern sediments were mainly derived from the Alxa Block with a typical recycled nature,while the provenance of the western and southwestern sediments were mainly from the Qinling-Qilian Orogenic Belt.The tectonic setting discrimination diagrams signify that the parent rocks of sandstones in the western and southern Ordos Basin were mainly developed from continental island arc,which is closely related to the evolution of the QinlingQilian Orogenic Belt.However,the sandstones in the northwestern Ordos Basin show complex features,which may be resulted from a typical recycling process.Overall evidence from petrography,geochemistry and sedimentology,together with previous researches suggest the Kongtongshan and Helanshan areas were the southwestern and northwestern boundary of the Ordos Basin,respectively,and there was no clear boundary between the Hexi Corridor Belt and Ordos Basin,where a large,uniform sediment dispersal system developed during the Late Triassic.展开更多
Based on the element geochemistry and biomarkers of the oil shale from the Chang 7 sub-unit in the southern Ordos Basin,the depositional conditions and organic source of the oil shale are discussed.Biomarkers analyses...Based on the element geochemistry and biomarkers of the oil shale from the Chang 7 sub-unit in the southern Ordos Basin,the depositional conditions and organic source of the oil shale are discussed.Biomarkers analyses show that the oil shale has a homologous organic matter source,with a mix of plankton and advanced plants.U/Th and V/Ni ratios suggest that the redox condition is dominated by a reducing condition,and the degree of anoxia in the Tongchuan area is higher than that of the Xunyi area.Sr/Ba ratios illustrate that the oil shale is deposited in fresh water and the paleosalinity in the Tongchuan area is slightly higher.Fe/Ti ratios imply that the Tongchuan area underwent obvious hydrothermal fluid activities.Sr/Cu ratios show warm and humid paleoclimate in both areas.As assessed by(La/Yb)NASC,the deposition rate in the Tongchuan area is relatively lower.Fe/Co and Th/U ratios suggest that the paleo-water-depth in the Tongchuan area is deeper.The source rock could have the advance plants source,which must have close relationship with the Qinling orogeny.Comparing the paleoenvironment,the Tongchuan area has better depositional conditions,and is the key oil shale exploration area in the southern Ordos Basin.展开更多
This study highlights the response of the periodic variation of the geochemical behavior of elements to the thermal metamorphism of coal by considering the differentiation mode and differentiation degree of elements o...This study highlights the response of the periodic variation of the geochemical behavior of elements to the thermal metamorphism of coal by considering the differentiation mode and differentiation degree of elements of the C2 coal seam in the Fengfeng mining area of the Handan Coalfield in Hebei,China.The periodic variation of the geochemical behavior of elements was observed to change towards a certain direction as the degree of metamorphism of a geological body increased.Based on the coincidence degree(or similarity degree)between the geochemical behavior of elements and periodic variation of elements,the 57 elements in this study were divided into two levels.The periodic variation of the geochemical behavior of first-level elements was largely synchronous with that of their first ionization energy,suggesting that only one differentiation mode exists and the elements are mainly inorganically associated.The differentiation mode of the second-level elements deviated to a certain extent from their first ionization energy;the larger the deviation,the more complicated and diverse was the differentiation mode.Among the second-level elements,the grade of coal metamorphism has evident and intuitive effects on the proportion of elements with particular structural features,such as the 4q+3 type of elements and the odd-odd elements.In addition,the distribution of elements in organic and inorganic matter within coal are subject to the structural features of the elements.The differentiation mode and differentiation intensity of elements could be characterized by the hierarchical parameter and differentiation intensity.The hierarchical parameter and differentiation intensity of certain elements showed a good positive or negative correlation with R_(max) in coal.The 57 elements in this study were quantitatively ordered according to the degree of magmatic hydrothermal fluid influence and thermal metamorphism of coal through graphs depicting the goodness of fit,correlation coefficient with R_(max),and differentiation intensity.The results of this study are consistent with the results of previous field research,illustrating the scientific significance and application value of this study on the periodic variation of the geochemical behavior of elements.展开更多
There are abundant vanadium ores in the Cambrian strata in southern Shaanxi,China.Many years of mining activities and surface leaching have polluted the surface water to a certain extent,but the researches on the wate...There are abundant vanadium ores in the Cambrian strata in southern Shaanxi,China.Many years of mining activities and surface leaching have polluted the surface water to a certain extent,but the researches on the water quality characteristics and pollution degree are relatively weak.This contribution was organized to investigate the surface water quality by general parameters,including TDS,Eh,pH,DO,TOC,COD,and EC,in the vanadium ore belt(Yinhua River basin).Major ions were determined to detect the water type and natural chemical weathering,while trace elements were used to illustrate their geochemical characteristics and ecological risk assessment of heavy metals.The study found that the surface water was weakly alkaline and mainly dominated from normal to pool grade.The particle size with1000–10,000 nm of suspended particles was the main carrier of organic matter.The concentration of HCO_(3)^(-)and SO_(4)^(2-)in the anions and Ca^(2+)and Mg^(2+)ions in the cations were relatively high,and the water type was Ca-Mg-HCO_(3)-SO_(4) type.Rock weathering had a great influence on surface water,and the weathering products were mainly silicate and carbonate.Compared with the Type river,the contents of V elements showed an obvious positive anomaly,which may be affected by mining activities of vanadium ore and the annual leaching of the tailings pond.As and Cd in the surface water was polluted seriously.The integrated pollution index suggested that the surface water pollution was serious,and the main stream was more serious with the increasing tailings ponds.展开更多
Forming adsorbents FFA-R,FFA-A and FFA-B were prepared from different particle size coal fly ashes FA-R,FA-A and FA-B,their average particle sizes(d_(50)) were 15.75,3.61 and 1.73 μm respectively.The structure an...Forming adsorbents FFA-R,FFA-A and FFA-B were prepared from different particle size coal fly ashes FA-R,FA-A and FA-B,their average particle sizes(d_(50)) were 15.75,3.61 and 1.73 μm respectively.The structure and adsorption properties for Cr^(6+) of forming adsorbents from aqueous solution were studied.The results show that forming adsorbent prepared from the coal fly ash with smaller particle size exhibits higher specific surface area,higher pore volume and better adsorption properties for Cr^(6+).The adsorption kinetics of Cr^(6+) on FFA-R,FFA-A and FFA-B fitts the second order kinetic model and the second adsorption rate constants are 7.523,3.197 and 2.187 mg·g^(-1)·min^(-1/2),respectively.The adsorption of Cr^(6+) on FFA-R,FFA-A and FFA-B can be described in terms of Langmuir isotherms better,and the adsorption processes are spontaneous and exothermic.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.42272209)the Natural Science Basic Research Program of Shaanxi(Grant No.2021JLM-12)the CNPC Major Science and Technology Project(Grant No.2021DJ3805)。
文摘Inertinite-rich coal is widely distributed in the Ordos Basin,represented by the No.2 coal seam of the Middle Jurassic Yan'an Formation.This paper combined coal petrology and geochemistry to analyze the origin of inertinite,changes in the coal-forming environment and control characteristics of wildfire.Research has shown that there are two forms of inertinite sources in the study area.Alongside typical fusinization,wildfire events also play a substantial role in inertinite formation.There are significant fluctuations in the coal-forming environment of samples at different depths.Coal samples were formed in dry forest swamp with low water levels and strong oxidation,which have a high inertinite content,and the samples formed in wet forest swamp and limnic showed low inertinite content.Conversely,the inertinite content of different origins does not fully correspond to the depositional environment characterized by dryness and oxidation.Nonpyrogenic inertinites were significantly influenced by climatic conditions,while pyrofusinite was not entirely controlled by climatic conditions but rather directly impacted by wildfire events.The high oxygen level was the main factor causing widespread wildfire events.Overall,the combination of wildfire activity and oxidation generates a high content of inertinite in the Middle Jurassic coal of the Ordos Basin.
基金This work is funded by the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the National Science Fund for Distinguished Young Scholars of China(Grant No.52222905).
文摘In the existing landslide susceptibility prediction(LSP)models,the influences of random errors in landslide conditioning factors on LSP are not considered,instead the original conditioning factors are directly taken as the model inputs,which brings uncertainties to LSP results.This study aims to reveal the influence rules of the different proportional random errors in conditioning factors on the LSP un-certainties,and further explore a method which can effectively reduce the random errors in conditioning factors.The original conditioning factors are firstly used to construct original factors-based LSP models,and then different random errors of 5%,10%,15% and 20%are added to these original factors for con-structing relevant errors-based LSP models.Secondly,low-pass filter-based LSP models are constructed by eliminating the random errors using low-pass filter method.Thirdly,the Ruijin County of China with 370 landslides and 16 conditioning factors are used as study case.Three typical machine learning models,i.e.multilayer perceptron(MLP),support vector machine(SVM)and random forest(RF),are selected as LSP models.Finally,the LSP uncertainties are discussed and results show that:(1)The low-pass filter can effectively reduce the random errors in conditioning factors to decrease the LSP uncertainties.(2)With the proportions of random errors increasing from 5%to 20%,the LSP uncertainty increases continuously.(3)The original factors-based models are feasible for LSP in the absence of more accurate conditioning factors.(4)The influence degrees of two uncertainty issues,machine learning models and different proportions of random errors,on the LSP modeling are large and basically the same.(5)The Shapley values effectively explain the internal mechanism of machine learning model predicting landslide sus-ceptibility.In conclusion,greater proportion of random errors in conditioning factors results in higher LSP uncertainty,and low-pass filter can effectively reduce these random errors.
基金This research was supported by the Ningxia Hui Autonomous Region Key Research and Development Plan(2022BEG03052).
文摘The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation.
基金We acknowledge the funding support from the National Natural Science Foundation of China(Grant No.42271148).
文摘Due to the presence of ice and unfrozen water in pores of frozen rock,the rock fracture behaviors are susceptible to temperature.In this study,the potential thawing-induced softening effects on the fracture behaviors of frozen rock is evaluated by testing the tension fracture toughness(KIC)of frozen rock at different temperatures(i.e.-20℃,-15℃,-12℃,-10℃,-8℃,-6℃,-4℃,-2℃,and 0℃).Acoustic emission(AE)and digital image correlation(DIC)methods are utilized to analyze the microcrack propagation during fracturing.The melting of pore ice is measured using nuclear magnetic resonance(NMR)method.The results indicate that:(1)The KIC of frozen rock decreases moderately between-20℃ and-4℃,and rapidly between-4℃ and 0℃.(2)At-20℃ to-4℃,the fracturing process,deduced from the DIC results at the notch tip,exhibits three stages:elastic deformation,microcrack propagation and microcrack coalescence.However,at-4℃e0℃,only the latter two stages are observed.(3)At-4℃e0℃,the AE activities during fracturing are less than that at-20℃ to-4℃,while more small events are reported.(4)The NMR results demonstrate a reverse variation trend in pore ice content with increasing temperature,that is,a moderate decrease is followed by a sharp decrease and-4℃ is exactly the critical temperature.Next,we interpret the thawing-induced softening effect by linking the evolution in microscopic structure of frozen rock with its macroscopic fracture behaviors as follow:from-20℃ to-4℃,the thickening of the unfrozen water film diminishes the cementation strength between ice and rock skeleton,leading to the decrease in fracture parameters.From-4℃ to 0℃,the cementation effect of ice almost vanishes,and the filling effect of pore ice is reduced significantly,which facilitates microcrack propagation and thus the easier fracture of frozen rocks.
文摘Coal remote sensing technology was founded in the period of coal resources survey after the founding of People’s Republic of China.Aerophoto Grammetry&Remote Sensing Bureau of China National Administration of Coal Geology was established,specializing in the application and promotion of coal remote sensing technology.With the rapid development of coal geological exploration in China,coal remote sensing technology has evolved from coal geology based survey to comprehensive survey that factors in resources,environment,ecology and so on.This paper summarizes the general situation,theories,development process,key research and future of remote sensing technology for coal mining in China.Spanning over 50 years,the history of China’s coal remote sensing technology can be divided into five stages:aero-geological mapping,coal remote sensing theory experimental research,application research and promotion,architecture planning and productionisation,“3S”technology integration and application.This paper expounds the main technical progress,application fields,major projects and major achievements in various historical periods,and points out that the coal remote sensing has entered a unified development stage of“Aviation,Aerospace and Ground”,with a focus on high-resolution remote sensing,hyperspectral remote sensing,radar remote sensing,“3S”technology integration and multi-means comprehensive exploration and evaluation.In the future,coal remote sensing technology will develop rapidly in data mass,technology integration,evaluation intelligence,integration application programming,system visualization,etc.Coal remote sensing technology has entered the industrial development from technology application.
基金supported from the Natural Science Basic Research Program of Shaanxi Province(No.2020JQ-744)China Postdoctoral Science Foundation(No.2020M673443)+2 种基金Shaanxi Provincial Education Department general special project(No.21JK0775)Opening Project of Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Natural Resources(No.KF2021-7)National Natural Science Foundation of China(Grant No.4210021463).
文摘As a hydrocarbon-rich sedimentary basin in China,the Ordos Basin has enormous potential for shale gas resources.The shale of the Upper Carboniferous Benxi Formation is rich in organic matter,however,its palaeoenvironment and organic matter enrichment mode are yet to be revealed.In this study,the geochemical characteristics of the shale of the Benxi Formation in the east-central part of the Ordos Basin were analyzed to investigate its palaeoenvironment.At the same time,the organic matter enrichment modes in different sedimentary facies were compared and analyzed.The results indicate that:1)the shale of the Benxi Formation was mainly deposited on the continental margin and strong terrestrial clastic input;2)the deposition period of the Benxi Formation shale had a hot and humid climate with high palaeoproductivity and local volcanic hydrothermal fluid,and a high sedimentation rate with the strong stagnant environment.The bottom water was in dysoxic conditions and a semi-saline deposition environment;3)multiple factors,such as palaeoproductivity,volcanic hydrothermal,redox conditions,and palaeosalinity interact to influence the enrichment of shale organic matter in Benxi Formation;4)the organic matter enrichment modes of continental,marine-continental transitional,and marine shales can be classified into three types:“production mode”,“hybrid mode of preservation and production”,and“preservation mode”,respectively.This study provides a reference for the organic matter enrichment mode,shale gas formation conditions,and core area evaluation in these marine-continental transitional shales,and also offers new guidance for exploration ideas for shale gas in different sedimentary facies.
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05000000)National Natural Science Foundation of China(No.41271518)Sci-technology Project of Shaanxi Province(No.2013kw19-01)
文摘Grassland is a major carbon sink in the terrestrial ecosystem. The dynamics of grassland carbon stock profoundly influence the global carbon cycle. In the published literatures so far, however, there are limited studies on the long-term dynamics and influential factors of grassland carbon stock, including soil organic carbon. In this study, spatial-temporal substitution method was applied to explore the characteristics of Medicago sativa L. (alfalfa) grassland biomass carbon and soil organic carbon density (SOCD) in a loess hilly region with different growing years and management patterns. The results demonstrated that alfalfa was the mono-dominant community during the cutting period (viz. 0-10 year). Community succession began after the abandonment of alfalfa grassland and then the important value of alfalfa in the community declined. The artificial alfalfa community abandoned for 30 years was replaced by the S. bungeana community. Accordingly, the biomass carbon density of the clipped alfalfa showed a significant increase over the time during 0-10 year. During 0-30 year, the SOCD from 0-100 cm of the soil layer of all 5 management patterns increased over time with a range between 5.300 ± 0.981 kg/m2 and 12.578 ± 0.863 kg/m2. The sloping croplands had the lowest SOCD at 5.300 ± 0.981 kg/m2 which was quite different from the abandoned grasslands growing for 30 years which exhibited the highest SOCD with 12.578 ± 0.863 kg/m2. The ecosystem carbon density of the grassland clipped for 2 years increased 0.1 kg/m2 compared with the sloping cropland, while that of the grassland clipped for 10 years substantially increased to 10.30 ± 1.26 kg/m2. Moreover, the ecosystem carbon density for abandoned grassland became 12.62± 0.50 kg/m2 at 30 years. The carbon density of the grassland undisturbed for l0 years was similar to that of the sloping cropland and the grassland clipped for 2 years. Different management patterns imposed great different effects on the accumulation of biomass carbon on artificial grasslands, whereas the ecosystem carbon density of the grassland showed a slight increase from the clipping to abandonment of grassland in general.
基金financially supported by the Natural Science Foundation of China(Grant No.41330315,91214301)the Program of China Geological Survey(Grant No.12120113039900)MOST Special Funds from the State Key Laboratory of Continental Dynamics,Northwest University
文摘The eastern Hexi Corridor Belt(HCB) is located in the transitional belt among the Alxa Block,the Qilian Orogenic Belt and the North China Block. Because of its unique tectonic location, the tectonic setting, provenance, and even the age of the sedimentary strata in the eastern HCB during the Early Paleozoic remain controversial. This study analyzes the provenance of the poorly studied Xiangshan Group, discusses its age of development and tectonic setting in the eastern HCB using a combination of petrological, geochemical and LA-ICP-MS U-Pb zircon dating methods. Based on the youngest age peaks and the fossil evidence, we suggest that the Xiangshan Group is Middle Cambrian to Late Ordovician in age. The complexity of the geochemical characteristics and associated diagrams suggests that the early stage of the Xiangshan Group developed in a passive continental margin environment, late in the backarc basin of the eastern HCB. Based on the sandstone detrital composition, whole-rock geochemistry and detrital zircon ages, we conclude that the Xiangshan Group had an early provenance that was mainly from the Qilian Block and a late provenance from the Qilian Block and the western Alxa Block. The eastern HCB and its northern and southern blocks have similar palaeontology, lithology and basement age characteristics to the South China Block. This indicates that the eastern HCB might not have formed in the intra-continental aulacogen of the North China Block during the Early Paleozoic but has a close affinity to eastern Gondwana.
基金This work was supported by the National Natural Science Foundation of China(Grant No.41772333)the program of State Key Laboratory of Frozen Soil Engineering(Grant No.SKLFSE201713)the Shaanxi Province New-Star Talents Promotion Project of Science and Technology(Grant No.2019KJXX-049).
文摘It is generally accepted that the uniaxial compressive strength(UCS)and P-wave velocity of rocks tend to decrease simultaneously with increasing temperature.However,based on a great number of statistical data and systematic analysis of the microstructure variation of rocks with temperature rising and corresponding propagation mechanism of elastic wave,the results show that(1)There are three different trends for the changes of UCS and P-wave velocity of sandstone when heated from room temperature(20C or 25C)to 800C:(i)Both the UCS and P-wave velocity decrease simultaneously;(ii)The UCS increases initially and then decreases,while the P-wave velocity decreases continuously;and(iii)The UCS increases initially and then fluctuates,while the P-wave velocity continuously decreases.(2)The UCS changes at room temperaturee400C,400Ce600C,and 600Ce800C are mainly attributed to the discrepancy of microstructure characteristics and quartz content,the transformation plasticity of clay minerals,and the balance between the thermal cementation and thermal damage,respectively.(3)The inconsistency in the trends of UCS and P-wave velocity changes is caused by the change of quartz content,phase transition of water and certain minerals.
基金supported by the National Natural Science Foundation of China(Nos.41202008,41202009,41172022)the Natural Science Basic Research Plan in Shaanxi Province of China (No.2011JQ5012)+1 种基金the Special Fund for Basic Scientific Research of Central Colleges,Chang'an University(Nos. 2014G1271061,CHD2011JC122,CHD2011TD005, 20I4G3272013,2013G3274021 and 2013G1271101)the Foundation of the State Key Laboratory of Paleobiology and Stratigraphy,Nanjing Institute of Geology and Paleontology,Chinese Academy of Sciences (No.123112)
文摘The extant genus Paliurus Miller is divided into P. ramosissimus and P. spina-christi groups and is diagnostically characterized by distinctive orbicular-winged fruits with a trilocular (or often bilocular) ovary and basally triveined leaves with a subentire to serrate margin. Here, structurally preserved winged fruits and associated compressed leaves of Paliurus (Paliureae, Rhamnaceae) are reported from the Middle-Upper Miocene Shengxian Formation of Tiantai, Zhejiang, eastern China. The fruits can be identified as Paliurus microcarpa Xiang-Chuan Lisp. nov., the diagnostic characters of external morphology and anatomy of which differ from those of both extant and fossil generic members; the leaves can be designated as Paliurus sp. The species based on winged fruits, P. microcarpa, might represent an ancient intermediate link exclusively known across the P. ramosissimus and P. spina-christi groups, showing a closer affinity to the P. ramosissimus group based on the resemblant smaller fruits with a narrower wing, and to the P. spina-christi group based on the similar wing structure and texture, respectively. Morphological analyses of the present and previous fossil fruit records around the world indicate that diversification of Paliurus had begun in northern transpacific regions by the Late Eocene. The macrofossil records, i.e., fruits and leaves of Paliurus globally when projected on paleoenvironmental maps in view of changing continental positions through time (from Eocene to Miocene) display that the past distribution of the genus was much wider than the present and belongs to a tropical and warm temperate realm of the Northern Hemisphere. Therefore, the modern restricted disjunction in tropical and warm temperate regions of East Asia and South Europe (even eastwards West Asia) might represent glacial refugia for some of the generic ancient lineages to survive severe cold at least since the terminal Pliocene.
基金a National Science and Technology Major Special Project of China(Grant No.2016ZX05044)a Postdoctoral Science Foundation of China(Grant No.2018M631181)+3 种基金a Natural Science Foundation of Shaanxi Province of China(Grant No.2019JQ-192)a Special Scientific Research Project of Natural Science of Education Department of Shaanxi Province(Grant No.2020-016)a Foundation Research Project of Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation(Grant No.MTy2019-08)the Independent Projects of the Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Land and Resources of China(Grant No.ZKF2018-1,ZP2018-2).
文摘The methods of nuclear magnetic resonance(NMR)spectroscopy,mercury injection porosimetry(MIP),and gas-water relative permeability(GWRP)were used to reveal the pore structure and permeability characteristics of high-rank coal reservoirs in the Bide-Santang basin,western Guizhou,South China,to provide guidance for coalbed methane(CBM)exploration and exploitation and obtain direct insights for the development of CBM wells.The results indicate that the coal reservoirs in the study area are characterized by well-developed adsorption pores and poorly developed seepage pores.The bimodal NMR transverse relaxation time(T2)spectra and the mutation in the fractal characteristic of the MIP pore volume indicate poor connectivity between the adsorption pores and the seepage pores.As a result,the effective porosity is relatively low,with an average of 1.70%.The irreducible water saturation of the coal reservoir is relatively high,with an average of 66%,leading to a low gas relative permeability under irreducible water saturation.This is the main reason for the low recovery of high-rank CBM reservoirs,and effective enhanced CBM recovery technology urgently is needed.As a nondestructive and less time-consuming technique,the NMR is a promising method to quantitatively characterize the pores and fractures of coals.
基金granted by the National Natural Science Foundation of China(Grant Nos.41802119 and 41330315)the Special Projects of China Geological Survey(Grant No.121201011000161111)Doctor’s Fund of Xi’an University of Science and Technology(Grant No.6310117052)。
文摘The tectonic setting of the northern Alxa region during the Late Paleozoic is highly controversial.The key to resolve this controversy is to recognize the Late Paleozoic magmatic processes in the northern Alxa.In this paper,we present new zircon U-Pb ages,Hf-isotopic compositions and whole-rock geochemical data of four granitoids along the Zhusileng-Hangwula Tectonic Belt in the northern Alxa region that could provide critical information about the tectonic evolution of this region.The zircon U-Pb data could be grouped as two phases:Late Devonian granite and diorite(ca.373-360 Ma),and Late Carboniferous granodiorite(ca.318 Ma).The Late Devonian granites and diorites are metaluminous to slightly peraluminous,with A/CNK and A/NK ratios of 0.90-1.11 and0.95-2.19,respectively.The Late Devonian diorites are characterized by high MgO,Cr and Ni contents and MgO#values,together with variableεHf(t)values from-1.0 to+1.3 and old TDM2 ages varied from 1283 Ma to 1426 Ma,indicating the primary magma was potentially derived from magma mixing of depleted mantle with Mesoproterozoic continental crust.Even though the Late Devonian granites yielded most positive and minor negative eHf(t)values between-1.1 to+5.7(three grains are negative)with two-stage model ages(TDM2)of 1003-1438 Ma,they display low MgO,Cr and Ni contents and MgO#values,suggesting that they were mainly derived from juvenile crustal materials,mixed with a small amount of ancient crust.The Late Carboniferous granitoids are metaluminous and medium-K calc-alkaline series,with A/CNK and A/NK ratios ranging from 0.88 to 0.95 and1.75 to 1.90,respectively.These rocks were potentially derived from juvenile crustal materials mixed with depleted mantle,as evidenced by their highεHf(t)values(+11.6 to+14.1)and young TDM2 ages(427 Ma to 586 Ma),as well as high Mg#values,and MgO,Ni and Cr contents.Our data,along with available sedimentary evidence and previous researches,indicate that the Late Devonian and Late Carboniferous rocks are arc-related granitoids under the subduction setting.The identification of arc-related granitoids in the northern Alxa region not only reveals the Late Paleozoic magmatic process in response to the subduction of Paleo Asian Ocean,but also provide significant constrains to the tectonic evolution of the Central Asian Orogenic Belt.
基金This paper was jointly sponsored by a National Science and Technology Major Special Project of China(No.2016ZX05044)a Postdoctoral Science Foundation of China(No.2018M631181)a Key Project of the Natural Science Foundation of China(No.40730422).We thank all of the parties that contributed to this publication.
文摘The geothermal fields of coal-bearing strata have become a key topic in geological research into coal and coal bed methane(CBM).Based on temperature data from 135 boreholes that penetrate the Upper Permian coal-bearing strata in the Bide-Santang basin,western Guizhou,the precisions of geothermal predictions made using a geothermal gradient model and a gray sequence GM(1,1)model are analyzed and compared.The results indicate that the gray sequence GM(1,1)model is more appropriate for the prediction of geothermal fields.The GM(1,1)model is used to predict the geothermal field at three levels with depths of 500,1000,and 1500 m,as well as within the No.6,No.16,and No.27 coal seams.The results indicate that the geotemperatures of the 500 m depth level are between 21.0 and 30.0°C,indicating no heat damage;the geotemperatures of the 1000 m depth level are between 29.4 and 44.7°C,indicating the first level of heat damage;and the geotemperatures of the 1500 m depth level are between35.6 and 63.4°C,indicating the second level of heat damage.The CBM contents are positively correlated with the geotemperatures of the coal seams.The target area for CBM development is identified.
基金supported by the Natural Science Research Project of the Colleges and Universities in Anhui Province(KJ2020ZD34)the National Natural Science Foundation of China(41807267 and 42077259).
文摘On August 10,2019,due to the effect of a rainstorm caused by Super Typhoon Lekima,a landslide occurred in Shanzao Village,China.It blocked the Shanzao stream,forming a barrier lake,and then the barrier lake burst.This is a rare natural disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.This study was built on field surveys,satellite image interpretation,the digital elevation model(DEM),engineering geological analysis and empirical regression.The purpose was to reveal the characteristics and causes of the landslide,the features and formation process of the barrier lake and the dam break flooding discharge.The results show that the volume of the landslide deposit is approximately 2.4×105 m3.The burst mode of the landslide dam is overtopping,which took only 22 minutes from the formation of the landslide dam to its overtopping.The dam-break peak flow was 1353 m3/s,and the average velocity was 2.8–3.0 m/s.This study shows that the strongly weathered rock and soil slope has low strength and high permeability under the condition of heavy rainfall,which reminds us the high risk of landslides and the importance of accurate early warning of landslides under heavy rainfalls in densely populated areas of Southeast China,as well as the severity of the disaster chain of typhoon-rainstorm-landslide-barrier lake-flooding.
文摘China is a top world producer of coal resources with numerous coal-rich basins country-wide that also contain coalbed methane(CBM),an unconventional natural gas resource.Recent exploration of coal and CBM resources has also led to the discovery of rare,precious,and scattered metal minerals,including sandstone-type U and Ga–Ge–Li.High-grade and industrial-value deposits have been discovered in the Ordos,Junggar,and other basins across China during exploration for coal resources.Application of coordinated exploration theories and techniques in multiple energy and coal-associated ore deposits,such as coal and unconventional natural gas in coal,achieves efficient and practical exploration of natural resources.Based on the systematic study of accumulation and occurrence of coal and coal-associated mineral resources in coal basins,the basic idea of coordinated exploration for coal and coal-associated deposits is proposed,and multi-targets and multi-methods based on a coordinated exploration model of coal-associated deposits is developed.Coordinated exploration expands the main exploration objective from coal seams to coal-associated series,extending the exploration target from targeting coal only to coal-associated deposits.Entrance times for exploration are decreased to realize coordinated exploration for coal,unconventional natural gas and syngenetic/associated mineral resources in coal by implementing a’one-time approach’―one time in and out of a coal seam to minimize disturbance and time needed for extraction.According to the differences of geological background in China’s coal basins,four coordinated exploration model types,including co-exploration of coal and coal-associated unconventional natural gas,coal and solid minerals,coal and metal minerals,and coal with water resources are established.Other models discussed include a multi-target coordinated exploration model for the combination of coal,coal-associated gas,solid minerals,and metal minerals accordingly.The exploration techniques of coal and coal-associated resources include regional geological investigation and research and synthetic application of other techniques including seismic surveys,drilling,logging,and geochemical exploration.Particularly,applying the’multi-purpose drill hole’or reworking coalfield drill holes into parameter wells,adding sample testing and logging wells,determining gas-bearing layers by logging and gas content measurement,jointly measuring multiple logging parameters,sampling,and testing of coal-strata help in the exploration and evaluation of coal resources,coal-associated unconventional natural gas resources,and coal-associated element minerals.Accordingly,a system of integrated Space–Air–Ground exploration techniques for coordinated exploration of coal and coal-associated minerals is established.This includes high-resolution,hyperspectral remote-sensing technique,high-precision geophysical exploration and fast,precise drilling,testing of experimental samples,as well as coordinated exploration and determination methods of multi-target factors,multi-exploration means,multi-parameter configuration and optimization,big data fusions and interpretation techniques.In recent years,the application of this integrated system has brought significant breakthroughs in coal exploration in Inner Mongolia,Xinjiang and other provinces,discovering several large,ten-billionton coalfields,such as the Eastern Junggar and Tuha basins,and also in exploration and development of CBM from lowrank coals in Fukang,Xinjiang,discovery the Daying U Deposit in Inner Mongolia,the Junggar Ultralarge Ga Deposit,Lincang,Yunnan,and the Wulantuga,Inner Mongolia,Ge-bearing coal deposits,and the Pingshuo Ultralarge Li–Ge Deposit.
基金the National Natural Science Foundation of China [Grant No. 41802119 and 41602212]Natural Science Foundation of Shaanxi [Grant No. 2019JQ-088]+1 种基金Special Projects of China Geological Survey [Grant No. 12120113039900 and 12120114009201]Doctor’s fund of Xi’an University of Science and Technology [Grant No. 2017QDJ051]
文摘Petrographic and geochemical characteristics of the Upper Triassic sandstones in the western Ordos Basin were studied to provide insight into weathering characteristics,provenance,and tectonic implications.Petrographic features show that the sandstones are characterized by low-medium compositional maturity and textural maturity.The CIA and CIW values reveal weak and moderate weathering history in the source area.The geochemical characteristics together with palaeocurrent data show that the northwestern sediments were mainly derived from the Alxa Block with a typical recycled nature,while the provenance of the western and southwestern sediments were mainly from the Qinling-Qilian Orogenic Belt.The tectonic setting discrimination diagrams signify that the parent rocks of sandstones in the western and southern Ordos Basin were mainly developed from continental island arc,which is closely related to the evolution of the QinlingQilian Orogenic Belt.However,the sandstones in the northwestern Ordos Basin show complex features,which may be resulted from a typical recycling process.Overall evidence from petrography,geochemistry and sedimentology,together with previous researches suggest the Kongtongshan and Helanshan areas were the southwestern and northwestern boundary of the Ordos Basin,respectively,and there was no clear boundary between the Hexi Corridor Belt and Ordos Basin,where a large,uniform sediment dispersal system developed during the Late Triassic.
基金Projects(41173055,41772118)supported by the National Natural Science Foundation of China
文摘Based on the element geochemistry and biomarkers of the oil shale from the Chang 7 sub-unit in the southern Ordos Basin,the depositional conditions and organic source of the oil shale are discussed.Biomarkers analyses show that the oil shale has a homologous organic matter source,with a mix of plankton and advanced plants.U/Th and V/Ni ratios suggest that the redox condition is dominated by a reducing condition,and the degree of anoxia in the Tongchuan area is higher than that of the Xunyi area.Sr/Ba ratios illustrate that the oil shale is deposited in fresh water and the paleosalinity in the Tongchuan area is slightly higher.Fe/Ti ratios imply that the Tongchuan area underwent obvious hydrothermal fluid activities.Sr/Cu ratios show warm and humid paleoclimate in both areas.As assessed by(La/Yb)NASC,the deposition rate in the Tongchuan area is relatively lower.Fe/Co and Th/U ratios suggest that the paleo-water-depth in the Tongchuan area is deeper.The source rock could have the advance plants source,which must have close relationship with the Qinling orogeny.Comparing the paleoenvironment,the Tongchuan area has better depositional conditions,and is the key oil shale exploration area in the southern Ordos Basin.
基金financial support from the National Natural Science Foundation of China(Grant Nos.41672145 and 42172191)the Science Foundation of Hebei(Grant No.D2021402013)。
文摘This study highlights the response of the periodic variation of the geochemical behavior of elements to the thermal metamorphism of coal by considering the differentiation mode and differentiation degree of elements of the C2 coal seam in the Fengfeng mining area of the Handan Coalfield in Hebei,China.The periodic variation of the geochemical behavior of elements was observed to change towards a certain direction as the degree of metamorphism of a geological body increased.Based on the coincidence degree(or similarity degree)between the geochemical behavior of elements and periodic variation of elements,the 57 elements in this study were divided into two levels.The periodic variation of the geochemical behavior of first-level elements was largely synchronous with that of their first ionization energy,suggesting that only one differentiation mode exists and the elements are mainly inorganically associated.The differentiation mode of the second-level elements deviated to a certain extent from their first ionization energy;the larger the deviation,the more complicated and diverse was the differentiation mode.Among the second-level elements,the grade of coal metamorphism has evident and intuitive effects on the proportion of elements with particular structural features,such as the 4q+3 type of elements and the odd-odd elements.In addition,the distribution of elements in organic and inorganic matter within coal are subject to the structural features of the elements.The differentiation mode and differentiation intensity of elements could be characterized by the hierarchical parameter and differentiation intensity.The hierarchical parameter and differentiation intensity of certain elements showed a good positive or negative correlation with R_(max) in coal.The 57 elements in this study were quantitatively ordered according to the degree of magmatic hydrothermal fluid influence and thermal metamorphism of coal through graphs depicting the goodness of fit,correlation coefficient with R_(max),and differentiation intensity.The results of this study are consistent with the results of previous field research,illustrating the scientific significance and application value of this study on the periodic variation of the geochemical behavior of elements.
基金supported by National Natural Science Foundation of China(No.4210021463)Natural Science Basic Research Program of Shaanxi Province(No.2020JQ-744)+2 种基金China Postdoctoral Science Foundation(No.2020M673443)Shaanxi Provincial Education Department general special project(No.21JK0775)Public Welfare Geology Project of Shaanxi Province(No.201907)。
文摘There are abundant vanadium ores in the Cambrian strata in southern Shaanxi,China.Many years of mining activities and surface leaching have polluted the surface water to a certain extent,but the researches on the water quality characteristics and pollution degree are relatively weak.This contribution was organized to investigate the surface water quality by general parameters,including TDS,Eh,pH,DO,TOC,COD,and EC,in the vanadium ore belt(Yinhua River basin).Major ions were determined to detect the water type and natural chemical weathering,while trace elements were used to illustrate their geochemical characteristics and ecological risk assessment of heavy metals.The study found that the surface water was weakly alkaline and mainly dominated from normal to pool grade.The particle size with1000–10,000 nm of suspended particles was the main carrier of organic matter.The concentration of HCO_(3)^(-)and SO_(4)^(2-)in the anions and Ca^(2+)and Mg^(2+)ions in the cations were relatively high,and the water type was Ca-Mg-HCO_(3)-SO_(4) type.Rock weathering had a great influence on surface water,and the weathering products were mainly silicate and carbonate.Compared with the Type river,the contents of V elements showed an obvious positive anomaly,which may be affected by mining activities of vanadium ore and the annual leaching of the tailings pond.As and Cd in the surface water was polluted seriously.The integrated pollution index suggested that the surface water pollution was serious,and the main stream was more serious with the increasing tailings ponds.
基金Funded by the National Natural Science Foundation of China(No.51278418)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2013K11-10)the Key Laboratory of Environmental Protection&Pollution and Remediation of Water and Soil of Shaanxi Province(Chang’an University)
文摘Forming adsorbents FFA-R,FFA-A and FFA-B were prepared from different particle size coal fly ashes FA-R,FA-A and FA-B,their average particle sizes(d_(50)) were 15.75,3.61 and 1.73 μm respectively.The structure and adsorption properties for Cr^(6+) of forming adsorbents from aqueous solution were studied.The results show that forming adsorbent prepared from the coal fly ash with smaller particle size exhibits higher specific surface area,higher pore volume and better adsorption properties for Cr^(6+).The adsorption kinetics of Cr^(6+) on FFA-R,FFA-A and FFA-B fitts the second order kinetic model and the second adsorption rate constants are 7.523,3.197 and 2.187 mg·g^(-1)·min^(-1/2),respectively.The adsorption of Cr^(6+) on FFA-R,FFA-A and FFA-B can be described in terms of Langmuir isotherms better,and the adsorption processes are spontaneous and exothermic.