Long afterglow photoluminescent materials Sr2MgSi2O7 doped with Eu2+, Dy3+ were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum a...Long afterglow photoluminescent materials Sr2MgSi2O7 doped with Eu2+, Dy3+ were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum and long decay curve were measured and analyzed. XRD pattern indicates that phosphor is with Sr2MgSi2O7 crystal structure. The wide range of excitation wavelength indicates that luminescent material can be excited by light from ultraviolet ray to visible light. The main peak of emission spectrum is located at 466 nm. Sample excited by visible light can emit bright blue light, and the afterglow time lasts more than 8 h.展开更多
Boron-doped hydrogenated microcrystalline Germanium (lac-Ge:H) films were deposited by hot-wire CVD. H2 diluted G-ell4 and B2H6 were used as precursors and the substrate temperature was kept at 300 ℃. The properti...Boron-doped hydrogenated microcrystalline Germanium (lac-Ge:H) films were deposited by hot-wire CVD. H2 diluted G-ell4 and B2H6 were used as precursors and the substrate temperature was kept at 300 ℃. The properties of the samples were analyzed by XRD, Raman spectroscopy, Fourier transform infrared spectrometer and Hall Effect measurement with Van der Pauw method. It is found that the films are partially crystallized, with crystalline fractions larger than 45% and grain sizes smaller than 50 nm. The B-doping can enhance the crystallization but reduce the grain sizes, and also enhance the preferential growth of Ge (220). The conductivity of the films increases and tends to be saturated with increasing diborane-to-germane ratio RB2H6. All the Hall mobilities of the samples are larger than 3.8 cmZV-1·s-1. A high conductivity of展开更多
Nanocrystalline zirconia(ZrO) was synthesized using a microwave-hydrothermal process.The effect of pH on the crystallization of the ZrO2 powders was investigated.The phase and microstructure of ZrO2 powders were exa...Nanocrystalline zirconia(ZrO) was synthesized using a microwave-hydrothermal process.The effect of pH on the crystallization of the ZrO2 powders was investigated.The phase and microstructure of ZrO2 powders were examined using X-ray diffraction(XRD),Raman spectroscopy,and transmission electron microscopy(TEM).Results show that pure m-ZrO2 can be obtained at low pH(pH<2).Pure t-ZrO2 is formed at pH = 7 and 14.The size of the ZrO2 crystals is in the range of 8-26 nm and decreases with increasing pH.The formation of m-ZrO2 results from the precipitation of ZrO2 from solution.The t-ZrO2 is formed through the in-situ structural rearrangement of amorphous Zr(OH)xOy.The stabilization of t-ZrO2 is attributed to the small crystal size and the adsorption of hydroxy ions on the surfaces of the crystals.展开更多
文摘Long afterglow photoluminescent materials Sr2MgSi2O7 doped with Eu2+, Dy3+ were prepared by sol-gel method. The synthesized samples were characterized by X-ray diffraction. The excitation spectrum, emission spectrum and long decay curve were measured and analyzed. XRD pattern indicates that phosphor is with Sr2MgSi2O7 crystal structure. The wide range of excitation wavelength indicates that luminescent material can be excited by light from ultraviolet ray to visible light. The main peak of emission spectrum is located at 466 nm. Sample excited by visible light can emit bright blue light, and the afterglow time lasts more than 8 h.
基金Funded by the National High-tech Research and Development Program of China(863 Program)(No.2006AA03Z219)Graduate Innovation Plan of Nanjing University of Aeronautics and Astronautics(No.BCXJ08-10)the National Natural Science Foundation of China(No.61306084)
文摘Boron-doped hydrogenated microcrystalline Germanium (lac-Ge:H) films were deposited by hot-wire CVD. H2 diluted G-ell4 and B2H6 were used as precursors and the substrate temperature was kept at 300 ℃. The properties of the samples were analyzed by XRD, Raman spectroscopy, Fourier transform infrared spectrometer and Hall Effect measurement with Van der Pauw method. It is found that the films are partially crystallized, with crystalline fractions larger than 45% and grain sizes smaller than 50 nm. The B-doping can enhance the crystallization but reduce the grain sizes, and also enhance the preferential growth of Ge (220). The conductivity of the films increases and tends to be saturated with increasing diborane-to-germane ratio RB2H6. All the Hall mobilities of the samples are larger than 3.8 cmZV-1·s-1. A high conductivity of
基金Funded by National Natural Science Foundation of China(No.51302160)Natural Science Foundation of Shaanxi Province(Nos.2014JQ6226 and 2014JQ6213)+1 种基金China Postdoctoral Science Foundation(No.2015M570808)the Doctoral Scientific Research Foundation of Shaanxi University of Science&Technology(No.BJ14-20)
文摘Nanocrystalline zirconia(ZrO) was synthesized using a microwave-hydrothermal process.The effect of pH on the crystallization of the ZrO2 powders was investigated.The phase and microstructure of ZrO2 powders were examined using X-ray diffraction(XRD),Raman spectroscopy,and transmission electron microscopy(TEM).Results show that pure m-ZrO2 can be obtained at low pH(pH<2).Pure t-ZrO2 is formed at pH = 7 and 14.The size of the ZrO2 crystals is in the range of 8-26 nm and decreases with increasing pH.The formation of m-ZrO2 results from the precipitation of ZrO2 from solution.The t-ZrO2 is formed through the in-situ structural rearrangement of amorphous Zr(OH)xOy.The stabilization of t-ZrO2 is attributed to the small crystal size and the adsorption of hydroxy ions on the surfaces of the crystals.