The contamination and environmental risk assessment of the toxic elements in sediments from the middle-downstream (Zhuzhou-Changsha section) of the Xiangjiang River in Hunan Province of China were studied. The results...The contamination and environmental risk assessment of the toxic elements in sediments from the middle-downstream (Zhuzhou-Changsha section) of the Xiangjiang River in Hunan Province of China were studied. The results show that As, Cd, Pb and Zn are major contaminants in sediments, and average concentrations of these elements significantly exceed both the Control Standards for Pollutants in Sludge of China (GB4284-84) for agricultural use in acidic soils and the effect range median (ERM) values. The average concentrations of As, Cd and Pb in the river water slightly exceed the limit of Surface Water Environment Quality Standard (GB3838-2002). The concentrations of As and Cr in depth profiles extensively change, but slight changes are observed in Pb and Zn. Cd and Zn in most sediment samples can easily enter the food-chain and bring possible ecotoxicological risk to organisms living in sediments according to the risk assessment code.展开更多
Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil ...Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources.Phytoremediation,being more cost-effective and fewer side effects than physical and chemical approaches,has gained increasing popularity in both academic and practical circles.More than 400 plant species have been identified to have potential for soil and water remediation.Among them,Thlaspi,Brassica,Sedum alfredii H.,and Arabidopsis species have been mostly studied.It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come.This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.展开更多
The 25 road-deposited sediments were collected from five different land-use zones (industrial, residential, commercial, park, and countryside) in Hangzhou, China. The concentrations of metals (Cd, Co, Cr, Cu, Fe, M...The 25 road-deposited sediments were collected from five different land-use zones (industrial, residential, commercial, park, and countryside) in Hangzhou, China. The concentrations of metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in these samples were determined using ICP-AES after digestion with the mixture of HNO3-HF-HC1 (aqua regia), and chemically fractionated according to the modified BCR (the European Community Bureau of Reference) sequential extraction procedure. The high metal concentration levels were detected in the sample from industrial zone and commercial zone having heavy traffic. While the low metal levels were noted in the street dust sample from residential zone, park, and countryside zone. The mobility sequence based on the sum of the BCR sequential extraction stages was: Zn (80.28%), Pb (78.68%), Cd (77.66%) 〉 Cu (73.34%) 〉 Mn (67.92%) 〉 Co (41.66%) 〉 Ni (30.36%) 〉 Cr (21.56%), Fe (20.86%). Correlation analysis and principal component analysis were applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of metals. Factor analysis showed that these areas were mainly contaminated by three sources, namely lithology, traffic, and industry.展开更多
Norfloxacin sorption and the factors (soil organic matter (SOM), pH, and exogenous copper (Cu) influencing the sorption were investigated in a black soil (soil B), a fluvo-aquic soil (soil F), and a red soil ...Norfloxacin sorption and the factors (soil organic matter (SOM), pH, and exogenous copper (Cu) influencing the sorption were investigated in a black soil (soil B), a fluvo-aquic soil (soil F), and a red soil (soil R). With increasing norfloxacin concentrations, sorption amount of norfloxacin increased in both the bulk soils and their SOM-removed soils, but the sorption capacity of SOM-removed soils was higher than that of their corresponding bulk soils, indicating that the process of norfloxacin sorption in soil was influenced by the soil properties including SOM. The sorption data in all bulk soils and SOM-removed soils were fitted to Freundlich and Langmuir models. The correlation coefficients suggested that the experimental data fitted better to Freundlich equation than to Langmuir equation. Furthermore, the data from soil F and SOM-removed F could not be described by Langmuir equation. The norfloxacin sorption amount decreased in soil B and soil F, whereas it increased in soil R as solution pH increased. The maximum KD and Koc were achieved in soil R when the equilibrium solution pH was 6. The norfloxacin sorption was also influenced by the exogenous Cu^2+, which depended on the soil types and Cu^2+ concentrations. With increasing Cu^2+ concentrations in solution, generally, sorption amount, KD and Koc for norfloxacin in soils increased and were up to a peak at 100 mg/L Cu^2+, and then the sorption amount decreased regardless of norfloxacin levels.展开更多
The soil factors influencing the potential migration of dissolved and particulate phosphorus(P) from structurally-weak sandy subsoils were evaluated by means of soil column leaching experiments. Soil colloids were ext...The soil factors influencing the potential migration of dissolved and particulate phosphorus(P) from structurally-weak sandy subsoils were evaluated by means of soil column leaching experiments. Soil colloids were extracted from two types of soils to make the colloid-bound forms of P solution. Eight sandy soils with diverse properties were collected for packing soil columns. The effects of influent solutions varying in concentrations of colloids,P,and electrolyte,on the transport of P and quality of leachates were characterized. P migration in the soils was soil property-dependent. High soil electrical conductivity values retarded the mobility of colloids and transportability of colloid-associated P(particulate P) . Soil electrical conductivity was negatively correlated with colloids and reactive particulate P(RPP) concentrations in the leachates,whereas,the total reactive P(TRP) and dissolved reactive P(DRP) concentrations in the leachates were mainly controlled by the P adsorption capacity and the P levels in the subsoil. The reactive particulate P in the leachates was positively correlated with the colloidal concentration. Increased colloidal concentration in the influent could significantly increase the colloidal concentration in the leachates. Elevated P concentration in the influent had little effect on P recovery in the leachates,but it resulted in significant increases in the absolute P concentration in the leachates.展开更多
The eutrophication problem has drawn attention to nutrient leaching from agricultural soils, and an understanding of spatial and temporal variability is needed to develop decision-making tools. Thus, eleven sites were...The eutrophication problem has drawn attention to nutrient leaching from agricultural soils, and an understanding of spatial and temporal variability is needed to develop decision-making tools. Thus, eleven sites were selected to monitor, over a two-year period, spatial and temporal variation of runoff discharge and various forms of N in surface runoff in sandy agricultural soils. Factors influencing the variation of runoff discharge and various forms of N in surface runoff were analyzed. Variation of annual rainfall was small among 11 sites, especially between 2001 and 2002. However, variation of annual discharge was significant among the sites. The results suggest that rainfall patterns and land use had significant effect on discharge. The concentrations of total N, total kjeldahl N (TKN), organic matter-associated N (OM-N), NO3- -N, and NHn+-N in the runoff ranged widely from 0.25 to 54.1, 0.15 to 20.3, 0.00 to 14.6, 0.00 to 45.3, and 0.00 to 19.7 mg/L, respectively. Spatial and temporal variations in the N concentration and runoff discharge were noted among the different sites. Annual loads of N in the runoff varied widely among monitoring sites and depend mainly on runoff discharge. High loads of total N, OM-N, NO3--N, and NHn+-N in the runoff either in citrus groves or on vegetable farms occurred from June to October for each year, which coincided with the rainy season in the region. This study found that N in surface runoff was related to rainfall intensity, soil N level, and fertilizer use.展开更多
Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in...Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in soil. The present study examined the effect of PS on pH, cadmium transformation and cadmium solubility in Andosol and Alluvial soil, and also compared its effects with CaCO3, acidic porous hydrated calcium silicate (APS) and silica gel. Soil cadmium was operationally fractionationed into exchangeable (Exch), bound to carbonates (Carb), bound to iron and manganese oxides (FeMnOx), bound to organic matters (OM) and residual (Res) fraction. Application of PS and CaCO3 at hig rates enhanced soil pH, while APS and silica gel did not obviously change soil pH. PS and CaCO3 also increased the FeMnOx-Cd in Andosol and Carb-Cd in Alluvial soil, thus reducing the Exch-Cd in the tested soils. However, PS was less effective than CaCO3 at the same application rate. Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel. There were no obvious differences in the solubility of cadmium in soils treated with PS, APS, silica gel and CaCO3 except Andosol treated 2.0% CaCO3 at the same pH of soil-CaC12 suspensions. These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS.展开更多
The Grain-for-Green Policy in China could not only improve China's ecological quality, but also influence grain supplies for a short term. Based on data from the detailed nationwide land use survey in 1996 and the st...The Grain-for-Green Policy in China could not only improve China's ecological quality, but also influence grain supplies for a short term. Based on data from the detailed nationwide land use survey in 1996 and the steep cultivated land survey update in 2000, a regression model for the driving forces affecting steep cultivated lands was developed, and cluster analysis was used to identify seven steep cultivated land types in order to analyze the grain availability impact of the project with land usage estimates for 2010 and 2030. The results suggested that consecutive days with minimum daily temperature over 10 ℃ and the dominant slope in a county constrained the spatial distribution of steep cultivated lands. In terms of socioeconomic factors, steep cultivated land was a complex interaction of population size, gross domestic production level, and the richness and quality of cultivated lands having slopes less then 15°. The trends for steep cultivated land in 2010 and 2030 were forecast using a driving forces model and China's grain security criteria and showed that the Grain-for-Green Policy at the national level would not cause a grain shortage or threaten food security criteria. However, if steep sloped lands were to be retired from production, some regions would need grain supplements as early as 2010. Also, assuming that only 60% of the cultivated land at the national level was needed, population and economic development pressures in 2030 would require some steep cultivated lands to be used for grain production.展开更多
To evaluate the effects of long-term applications of phosphorus fertilizers on mobility of dissolved organic matter (DOM) and heavy metals in agricultural soils, a sandy soil and a loamy soil were spiked with ammoni...To evaluate the effects of long-term applications of phosphorus fertilizers on mobility of dissolved organic matter (DOM) and heavy metals in agricultural soils, a sandy soil and a loamy soil were spiked with ammonium phosphate at application rates of 0, 25, 50, 100, 250, and 500 mg P per kilogram of soil. A series of 15-cm long soil columns were constructed by packing incubated soils of varying concentrations of P. The soil columns were consecutively leached by simulated rainfalls for six cycles. The contents of water extractable organic carbon in both sandy and loamy soils increased significantly with increasing rates of P applications. Relatively high rates of P applications could induce a marked increase in DOM concentrations in the leachates, the effects were larger with the sandy soil rather than with the loamy soil. Applications of P changed the partitioning of trace metals in the soil solids and the soil solutions. The increased P application rates also seemed to elevate the leaching of Cu, Cd, and Zn from soils. The concentrations of Cu, Cd, and Zn in the leachates were positively correlated with DOM, probably due to the formation of metal-DOM complexes. In contrast, Pb concentrations in the leachates were negatively correlated with DOM, and decreased with increasing rates of P applications. The boosted leaching of DOM induced by high rates of P applications was probably due to the added phosphate ions competing for adsorption sites in the soil solids with the indigenous DOM.展开更多
Extractability and mobility of Cu and Zn and their relationships with 1) accumulation of Cu and Zn and 2) soil pH were studied in three sandy soils (Wabasso, Ankona, and Winder) from commercial citrus groves in Florid...Extractability and mobility of Cu and Zn and their relationships with 1) accumulation of Cu and Zn and 2) soil pH were studied in three sandy soils (Wabasso, Ankona, and Winder) from commercial citrus groves in Florida, USA. The soils, with a broad range of Cu and Zn concentrations, were fractionated by a modified procedure of Amacher, while Cu and Zn mobility were evaluated using column leaching. The extractability of Cu and Zn increased with decreasing soil pH. Also with increasing total soil Cu and Zn for extractable Cu in the Wabasso sand a threshold level, where the metal extraction rate increased, was noted at 100 mg kg-1, whereas for extractable Zn in the Wabasso sand the threshold level was found at 60 mg kg-1 and in the Ankona sand at 120 mg kg-1. These results suggested that the release potential of Cu and Zn was greater in the Wabasso sand than in the Ankona sand. The column leaching experiment showed that at total soil Cu or Zn concentrations < 100 mg kg-1 all leachates had low Cu and Zn concentrations. However at total concentrations > 200 mg kg-1 for Cu and > 150 mg kg-1 for Zn with decreasing soil pH, the concentrations of both Cu and Zn in the leachates increased exponentially. Also in these sandy soils soluble Cu and Zn mainly originated from the exchangeable fractions, and pH was a key factor controlling Cu and Zn extractability and mobility.展开更多
The interaction effect of two sulfonylurea herbicides, bensulfuron methyl (B) and metsulfuron methyl(M), were tested on microbial biomass C, N, N mineralization and C/N ratio in a loamy sand soil. The herbicides we...The interaction effect of two sulfonylurea herbicides, bensulfuron methyl (B) and metsulfuron methyl(M), were tested on microbial biomass C, N, N mineralization and C/N ratio in a loamy sand soil. The herbicides were applied at various levels of: control (B0M0), 0.01 and 0.01 (B1M1), 0.01 and 0.1 (B1M2), and 0.01 and 1.0 (B1M3) μg/g soil. Determinations of soil microbial biomass C, N and N mineralization contents were carried out at 1, 3, 5, 7, 10, 15, 25 and 45 days after herbicides application. The results showed that the soil microbial biomass C (C mic ) and microbial biomass N (N mic ) decreased consistently with the increasing rates of herbicides. The results further indicated that B1M1 and B1M2 caused a significant reduction in C mic and N mic within first 10 and 7 days of incubation, respectively, as compared with the control. These reductions in C mic and N mic were also significant ( P =0.05) with B1M3 application especially within first 15 days of incubation. A significant reduction in N mineralization (N min) was observed with high doses (B1M2, B1M3) of herbicides within first 5 days of incubation, while low rate (B1M1) failed to produce any significant effect. An increase in the soil microbial biomass C:N ratio was also noted.展开更多
Heavy metals can be introduced into urban soils at the same time. Therefore, their selective retention and competitive adsorption by the soils become of major importance in determining their availability and movement ...Heavy metals can be introduced into urban soils at the same time. Therefore, their selective retention and competitive adsorption by the soils become of major importance in determining their availability and movement throughout the soil. In this study, the availability and mobility of six heavy metals in eight urban soils collected from different cities of Zhejiang Province, southeastern China were assessed using distribution coefficients(Kd) and retardation factor(Rf). The results showed that there were great differences in the Kd and Rfamong the tested soils. The adsorption sequences were Cr〉Pb〉Cu〉Cd〉Zn〉Ni, and the Kd decreased with increasing levels of metal addition. Ni generally has the lowest Rf values followed closely by Cd, and Zn whereas Cr and Pb reached the highest values. The results suggest that Ni and Zn have the highest mobility associated to the lowest adsorption, Cr and Pb present the opposite behavior. Correlation analysis indicates that soil pH, CaCO3 content, and cation exchange capacity (CEC) are key factors controlling the solubility and mobility of the metals in the urban soils.展开更多
The eclogite gravels, which were found in the Mesozoic Fenghuangtai and Maotanchang formations on the northern margin of the Dabie orogenic belt, are rich in K-2O (1.21%), ∑REE (278μg/g), and LILE (such as Rb, Ba, K...The eclogite gravels, which were found in the Mesozoic Fenghuangtai and Maotanchang formations on the northern margin of the Dabie orogenic belt, are rich in K-2O (1.21%), ∑REE (278μg/g), and LILE (such as Rb, Ba, K, Th, etc.), with high (La/Yb)-N ratios (14.4), on the basis of the analyses of major elements, rare-earth elements (REE) and trace elements. Their enrichment in LILE, notable Nb-Ta depletion through, and depletion in HFSE relative to REE in comparison with the primitive mantle and N-MORB indicate that the protoliths of the eclogite gravels were formed in an island-arc setting. According to the Th-Hf-Ta discrimination diagram, the protoliths of the eclogite gravels are characterized by volcanic arc basalts. Trace element data indicate that the subducted marine sediments were assimilated in the magma chamber, resulting in the enrichment of LILE in the protoliths. Therefore, the protoliths of the eclogite gravels are considered to have been formed in an inland-arc setting, indicating that there had developed a paleo-inland arc before Triassic collision between the North and South China blocks in the Dabie orogenic belt. There is a marked difference between the eclogite gravels and the eclogites developed along the Dabie orogenic belt, solely based on their geochemical data, especially REE. Therefore, the eclogite gravels may not be derived from eclogite terrains preserved in the Dabie orogenic belt.展开更多
A field experiment located in Taihu Lake Basin of China was conducted, by application of urea or a mixture of urea with manure, to elucidate the interception of nitrogen (N) export in a typical rice field through "...A field experiment located in Taihu Lake Basin of China was conducted, by application of urea or a mixture of urea with manure, to elucidate the interception of nitrogen (N) export in a typical rice field through "zero-drainage water management" combined with sound irrigation, rainfall forecasting and field drying. N concentrations in floodwater rapidly declined before the first event of field drying after three split fertilizations, and subsequently tended to rearm to the background level. Before the first field drying, total particulate nitrogen (TPN) was the predominant N form in floodwater of plots with no N input, dissolved inorganic nitrogen (DIN) on plots that received urea only, and dissolved organic nitrogen (DON) on plots treated with the mixture of urea and manure. Thereafter TPN became the major form. No N export was found from the rice field, but total nitrogen (TN) of 15.8 kg/hm^2 was remained, mainly due to soil N sorption. The results recommended the zero-drainage water management for full-scale areas for minimizing N export.展开更多
Combined with remote sensing data and meteorological data, cold damage risk was assessed for planting area of double cropping rice (DCR) in Hunan Province, China. A new methodology of cold damage risk assessment was...Combined with remote sensing data and meteorological data, cold damage risk was assessed for planting area of double cropping rice (DCR) in Hunan Province, China. A new methodology of cold damage risk assessment was built that apply to grid and have clear hazard-affected body. Each station cold damage annual frequency and average annual intensity of cold damage was calculated by using 1951-2010 station daily mean temperature and simple cold damage identification index. On this basis, average annual cold damage risk index was obtained by their product. The spatial analysis models of cold damage risk index about double-season early rice (DSER) and double-season later rice (DSLR) were established respectively by the relation of average annual cold damage risk index and its geographic factors. Critical threshold of level of average annual cold damage risk index for DSER and DSLR were respectively divided by the correlative equation of cold damage annual frequency and average annual intensity of cold damage. 2001-2010 planting area of DCR, acquired by time series analysis of MOD09AI 8-d composite land surface reflectance product, was as target of assessment. The results show average annual intensity of cold damage is exponential function of cold damage annual frequency, average annual cold damage risk index is directly proportional to cold damage cumulant and cold damage annual frequency, and is inversely proportional to happen times of cold damage and the square of statistical time sequence length. Cold damage risk of DSER is higher than DSLR in Hunan Province. In the 10-yr stacking map, DCR planting in low risk area accounted for 11.92% of total extraction area, in moderate risk area accounted for 69.62%, in high risk area accounted for 18.46%. According to the cold damage risk assessment result, DCR production can be guided to reduce cold damage losses.展开更多
The normalized difference vegetation index (NDVI) has proven to be typically employed to assess terrestrial vegetation conditions. However, one limitation of NDVI for drought monitoring is the apparent time lag betw...The normalized difference vegetation index (NDVI) has proven to be typically employed to assess terrestrial vegetation conditions. However, one limitation of NDVI for drought monitoring is the apparent time lag between rainfall deficit and NDVI response. To better understand this relationship, time series NDVI (2000-2010) during the growing season in Sichuan Province and Chongqing City were analyzed. The vegetation condition index (VCI) was used to construct a new drought index, time-integrated vegetation condition index (TIVCI), and was then compared with meteorological drought indices-standardized precipitation index (SPI), a multiple-time scale meteorological-drought index based on precipitation, to examine the sensitivity on droughts. Our research findings indicate the followings: (1) farmland NDVI sensitivity to precipitation in study area has a time lag of 16-24 d, and it maximally responds to the temperature with a lag of about 16 d. (2) We applied the approach to Sichuan Province and Chongqing City for extreme drought monitoring in 2006 and 2003, and the results show that the monitoring results from TIVCI are closer to the published China agricultural statistical data than VCI. Compared to VCI, the best results from TIVCI3 were found with the relative errors of -4.5 and 6.36% in 2006 for drought affected area and drought disaster area respectively, and 5.11 and -5.95% in 2003. (3) Compared to VCI, TIVCI has better correlation with the SPI, which indicates the lag and cumulative effects of precipitation on vegetation. Our finding proved that TIVCI is an effective indicator of drought detection when the time lag effects between NDVI and climate factors are taken into consideration.展开更多
The response of tomato (Lycopersicon esculentum) plants basically fertilized with 0.3 g N per plant of compound fertilizer with a N:P2O5:K2O ratio of 20:10:20 to sticks of polyolefin-coated fertilizer (POCF) ...The response of tomato (Lycopersicon esculentum) plants basically fertilized with 0.3 g N per plant of compound fertilizer with a N:P2O5:K2O ratio of 20:10:20 to sticks of polyolefin-coated fertilizer (POCF) (LongT0 with a N:P2Os:K2O ratio of 14:12:14) applied 23 d after transplanting was investigated using rooting boxes in the greenhouse. The results at 26 and 40 d after stick fertilizer treatment showed that the use of the stick fertilizer greatly increased the production of many new fine roots from the tomato plants. Compared to the unfertilized control, root length and root length density in the stick fertilizer treatment increased by 3.6-6.7 fold. In the soil zones near the stick fertilizer, root weight and root mass density were also significantly higher for the stick fertilizer treatment. Additionally, the use of the stick fertilizer increased the N, P and K concentrations in the leaves and stems of the tomato plants. The new fine roots growing near the stick fertilizer not only absorbed more nutrients and translocated them to the shoots, but also contained more nutrients within themselves. The soil ammonium and nitrate N data showed that N released from the stick fertilizer played a major role in inducing the production of new fine roots. These results indicated that stick fertilizer could be used as an alternative to the co-situs application technique to change and control the root distribution of crops as well as to increase the potential capacity of roots for water and nutrient absorption.展开更多
The rapid growth and intensification of freshwater fishery can cause imbalances between phosphorus (P) input in feed and its output in produce. This aquaculture can result in enriching exogenous P in fishponds and, ...The rapid growth and intensification of freshwater fishery can cause imbalances between phosphorus (P) input in feed and its output in produce. This aquaculture can result in enriching exogenous P in fishponds and, consequently, accelerates the process of eutrophication. To assess relations among input, accumulation, release of P and as a consequence degrading water quality in terms of chlorophyll-a (Chl-a) in freshwater fishponds, fourteen fishponds with feed supply, nine fishponds without feed supply, and five nonfish ponds in Shaoxing Plain, southeast China were selected for comparing P accumulation in their waters and surface sediments. Surface sediment samples were collected from each pond to evaluate their total P, water soluble P, Olsen P, algal available P, and P fractions. Water samples were also collected from the ponds to measure concentrations of dissolved P and Chl-a. Total P in the sediments ranged from 0.88 to 1.73 g/kg in the fishponds with feed supply, that in the non-fish ponds ranged from 0.47 to 0.86 g/kg. Organic P, accounted for 23% to 60% of total P in the sediments, was an important P fraction and increased linearly with increasing organic matter. Long-term application of feeds resulted in increased P availability in the bottom sediments and degradation of water quality in the freshwater fishponds. Compared with non-fish ponds, sediments from the feed-supplied fishponds contained considerably higher Olsen P, algal available P, and water soluble P. Higher proportions of the labile P (NH4Cl-P) and potentially labile P (NaOH-IP) were also found in the sediments from the fishponds. High solubility of P in the sediments resulted in elevation of P and chlorophyll-a concentration in the pond water. The dissolved P concentration in the pond water increased in the order of non-fish ponds (12μg/L) 〈 fishponds without feed supply (24 μg/L) 〈 fishponds with feed supply (66 μg/L). Linear correlations between concentrations of total P, Olsen-P, algal available P, water-soluble P and P concentration in saturation extracts in the sediments and dissolved P in the pond water indicated that there was a buffering action of the sediment constituents on the dissolved P.展开更多
Afforestation in sandy soils can cause soil acidification and affect Cu and Zn release. The behaviors of Cu and Zn release from contaminated arable sandy soils were investigated in the laboratory with the methods of s...Afforestation in sandy soils can cause soil acidification and affect Cu and Zn release. The behaviors of Cu and Zn release from contaminated arable sandy soils were investigated in the laboratory with the methods of simulated acidification of the soils. The results showed that soil acidification could change chemical forms of Cu and Zn in the soils, impel the transformation of Cu and Zn from carbonate associated fractions to exchangeable, organic matter and oxides associated fractions, and thus increase the release potential of Cu and Zn in the soils. The effect of the acidification on Zn leaching was more significant than that of Cu. Water solubility of Cu and Zn in the soils was increased with decreasing pH, and the solubility of Cu and Zn was increased exponentially at pH 3.8-4.5, and 6.2-6.5, respectively.展开更多
The Editor-in-Chief has retracted this article as it contains material that substantially overlaps with the following article(Mensah et al.2016).Mengistu Teshome Wondimu does not agree to this retraction.Zebene Asfaw ...The Editor-in-Chief has retracted this article as it contains material that substantially overlaps with the following article(Mensah et al.2016).Mengistu Teshome Wondimu does not agree to this retraction.Zebene Asfaw Nigussie and Muktar Moham-med Yusuf have not responded to any correspondence from the editor/publisher about this retraction.展开更多
基金Project (20507022) supported by the National Natural Science Foundation of ChinaProject (EREH050303) supported by the Foundation of Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health
文摘The contamination and environmental risk assessment of the toxic elements in sediments from the middle-downstream (Zhuzhou-Changsha section) of the Xiangjiang River in Hunan Province of China were studied. The results show that As, Cd, Pb and Zn are major contaminants in sediments, and average concentrations of these elements significantly exceed both the Control Standards for Pollutants in Sludge of China (GB4284-84) for agricultural use in acidic soils and the effect range median (ERM) values. The average concentrations of As, Cd and Pb in the river water slightly exceed the limit of Surface Water Environment Quality Standard (GB3838-2002). The concentrations of As and Cr in depth profiles extensively change, but slight changes are observed in Pb and Zn. Cd and Zn in most sediment samples can easily enter the food-chain and bring possible ecotoxicological risk to organisms living in sediments according to the risk assessment code.
基金Project supported by the Higher Education Commission,Government of Pakistan for the faculty training under the R & D Project"Strengthening Department of Soil Science and Soil and Water Conservation" at the University of Florida,USA,a grant from the St. Lucie River Water Initiative (SFWMD contract No. OT060162),USA,in partthe Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0536),China
文摘Environmental pollution affects the quality of pedosphere,hydrosphere,atmosphere,lithosphere and biosphere.Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources.Phytoremediation,being more cost-effective and fewer side effects than physical and chemical approaches,has gained increasing popularity in both academic and practical circles.More than 400 plant species have been identified to have potential for soil and water remediation.Among them,Thlaspi,Brassica,Sedum alfredii H.,and Arabidopsis species have been mostly studied.It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come.This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources.
基金supported by the Natural Science Foun-dation of Zhejiang Province, China (No. R306011)the National Basic Research Program (973) of China (No.2005CB121104)the National Natural Science Foundation of China (No. 40771090).
文摘The 25 road-deposited sediments were collected from five different land-use zones (industrial, residential, commercial, park, and countryside) in Hangzhou, China. The concentrations of metals (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in these samples were determined using ICP-AES after digestion with the mixture of HNO3-HF-HC1 (aqua regia), and chemically fractionated according to the modified BCR (the European Community Bureau of Reference) sequential extraction procedure. The high metal concentration levels were detected in the sample from industrial zone and commercial zone having heavy traffic. While the low metal levels were noted in the street dust sample from residential zone, park, and countryside zone. The mobility sequence based on the sum of the BCR sequential extraction stages was: Zn (80.28%), Pb (78.68%), Cd (77.66%) 〉 Cu (73.34%) 〉 Mn (67.92%) 〉 Co (41.66%) 〉 Ni (30.36%) 〉 Cr (21.56%), Fe (20.86%). Correlation analysis and principal component analysis were applied to the data matrix to evaluate the analytical results and to identify the possible pollution sources of metals. Factor analysis showed that these areas were mainly contaminated by three sources, namely lithology, traffic, and industry.
基金supported by the National Key Basic Research Support Foundation of China (No.2005CB121105), the Ministry of Science and Technology of China (No. 2006BAD05B05)the International Foundation for Science (No. C/4076).
文摘Norfloxacin sorption and the factors (soil organic matter (SOM), pH, and exogenous copper (Cu) influencing the sorption were investigated in a black soil (soil B), a fluvo-aquic soil (soil F), and a red soil (soil R). With increasing norfloxacin concentrations, sorption amount of norfloxacin increased in both the bulk soils and their SOM-removed soils, but the sorption capacity of SOM-removed soils was higher than that of their corresponding bulk soils, indicating that the process of norfloxacin sorption in soil was influenced by the soil properties including SOM. The sorption data in all bulk soils and SOM-removed soils were fitted to Freundlich and Langmuir models. The correlation coefficients suggested that the experimental data fitted better to Freundlich equation than to Langmuir equation. Furthermore, the data from soil F and SOM-removed F could not be described by Langmuir equation. The norfloxacin sorption amount decreased in soil B and soil F, whereas it increased in soil R as solution pH increased. The maximum KD and Koc were achieved in soil R when the equilibrium solution pH was 6. The norfloxacin sorption was also influenced by the exogenous Cu^2+, which depended on the soil types and Cu^2+ concentrations. With increasing Cu^2+ concentrations in solution, generally, sorption amount, KD and Koc for norfloxacin in soils increased and were up to a peak at 100 mg/L Cu^2+, and then the sorption amount decreased regardless of norfloxacin levels.
基金the Natural Science Foundation of Zhejiang Province, China (No.R306011).
文摘The soil factors influencing the potential migration of dissolved and particulate phosphorus(P) from structurally-weak sandy subsoils were evaluated by means of soil column leaching experiments. Soil colloids were extracted from two types of soils to make the colloid-bound forms of P solution. Eight sandy soils with diverse properties were collected for packing soil columns. The effects of influent solutions varying in concentrations of colloids,P,and electrolyte,on the transport of P and quality of leachates were characterized. P migration in the soils was soil property-dependent. High soil electrical conductivity values retarded the mobility of colloids and transportability of colloid-associated P(particulate P) . Soil electrical conductivity was negatively correlated with colloids and reactive particulate P(RPP) concentrations in the leachates,whereas,the total reactive P(TRP) and dissolved reactive P(DRP) concentrations in the leachates were mainly controlled by the P adsorption capacity and the P levels in the subsoil. The reactive particulate P in the leachates was positively correlated with the colloidal concentration. Increased colloidal concentration in the influent could significantly increase the colloidal concentration in the leachates. Elevated P concentration in the influent had little effect on P recovery in the leachates,but it resulted in significant increases in the absolute P concentration in the leachates.
文摘The eutrophication problem has drawn attention to nutrient leaching from agricultural soils, and an understanding of spatial and temporal variability is needed to develop decision-making tools. Thus, eleven sites were selected to monitor, over a two-year period, spatial and temporal variation of runoff discharge and various forms of N in surface runoff in sandy agricultural soils. Factors influencing the variation of runoff discharge and various forms of N in surface runoff were analyzed. Variation of annual rainfall was small among 11 sites, especially between 2001 and 2002. However, variation of annual discharge was significant among the sites. The results suggest that rainfall patterns and land use had significant effect on discharge. The concentrations of total N, total kjeldahl N (TKN), organic matter-associated N (OM-N), NO3- -N, and NHn+-N in the runoff ranged widely from 0.25 to 54.1, 0.15 to 20.3, 0.00 to 14.6, 0.00 to 45.3, and 0.00 to 19.7 mg/L, respectively. Spatial and temporal variations in the N concentration and runoff discharge were noted among the different sites. Annual loads of N in the runoff varied widely among monitoring sites and depend mainly on runoff discharge. High loads of total N, OM-N, NO3--N, and NHn+-N in the runoff either in citrus groves or on vegetable farms occurred from June to October for each year, which coincided with the rainy season in the region. This study found that N in surface runoff was related to rainfall intensity, soil N level, and fertilizer use.
基金Project supported by the Grant-in-Aid for Scientific Research from Ministry of Education, Science, Sport, and Technology of Japan (No.13876015).
文摘Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in soil. The present study examined the effect of PS on pH, cadmium transformation and cadmium solubility in Andosol and Alluvial soil, and also compared its effects with CaCO3, acidic porous hydrated calcium silicate (APS) and silica gel. Soil cadmium was operationally fractionationed into exchangeable (Exch), bound to carbonates (Carb), bound to iron and manganese oxides (FeMnOx), bound to organic matters (OM) and residual (Res) fraction. Application of PS and CaCO3 at hig rates enhanced soil pH, while APS and silica gel did not obviously change soil pH. PS and CaCO3 also increased the FeMnOx-Cd in Andosol and Carb-Cd in Alluvial soil, thus reducing the Exch-Cd in the tested soils. However, PS was less effective than CaCO3 at the same application rate. Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel. There were no obvious differences in the solubility of cadmium in soils treated with PS, APS, silica gel and CaCO3 except Andosol treated 2.0% CaCO3 at the same pH of soil-CaC12 suspensions. These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS.
基金Project supported by the Program for Changjiang Scholars and Innovative Research Teams in University (PCSIRT), China (No. IRT0412) and the Ministry of Land and Resources, China (No. 2003-2.2-2).
文摘The Grain-for-Green Policy in China could not only improve China's ecological quality, but also influence grain supplies for a short term. Based on data from the detailed nationwide land use survey in 1996 and the steep cultivated land survey update in 2000, a regression model for the driving forces affecting steep cultivated lands was developed, and cluster analysis was used to identify seven steep cultivated land types in order to analyze the grain availability impact of the project with land usage estimates for 2010 and 2030. The results suggested that consecutive days with minimum daily temperature over 10 ℃ and the dominant slope in a county constrained the spatial distribution of steep cultivated lands. In terms of socioeconomic factors, steep cultivated land was a complex interaction of population size, gross domestic production level, and the richness and quality of cultivated lands having slopes less then 15°. The trends for steep cultivated land in 2010 and 2030 were forecast using a driving forces model and China's grain security criteria and showed that the Grain-for-Green Policy at the national level would not cause a grain shortage or threaten food security criteria. However, if steep sloped lands were to be retired from production, some regions would need grain supplements as early as 2010. Also, assuming that only 60% of the cultivated land at the national level was needed, population and economic development pressures in 2030 would require some steep cultivated lands to be used for grain production.
基金supported by the Natural Science Foundation of Zhejiang Province,China (No.R306011)the National Basic Research Program (973) of China (No.2005CB121104)the National Natural Science Foundation of China (No.40771090)
文摘To evaluate the effects of long-term applications of phosphorus fertilizers on mobility of dissolved organic matter (DOM) and heavy metals in agricultural soils, a sandy soil and a loamy soil were spiked with ammonium phosphate at application rates of 0, 25, 50, 100, 250, and 500 mg P per kilogram of soil. A series of 15-cm long soil columns were constructed by packing incubated soils of varying concentrations of P. The soil columns were consecutively leached by simulated rainfalls for six cycles. The contents of water extractable organic carbon in both sandy and loamy soils increased significantly with increasing rates of P applications. Relatively high rates of P applications could induce a marked increase in DOM concentrations in the leachates, the effects were larger with the sandy soil rather than with the loamy soil. Applications of P changed the partitioning of trace metals in the soil solids and the soil solutions. The increased P application rates also seemed to elevate the leaching of Cu, Cd, and Zn from soils. The concentrations of Cu, Cd, and Zn in the leachates were positively correlated with DOM, probably due to the formation of metal-DOM complexes. In contrast, Pb concentrations in the leachates were negatively correlated with DOM, and decreased with increasing rates of P applications. The boosted leaching of DOM induced by high rates of P applications was probably due to the added phosphate ions competing for adsorption sites in the soil solids with the indigenous DOM.
基金Project partly supported by the U.S. Environmental Protection Agency through a contract with the Nonpoint Source Management/Water Quality Standard Section of the Florida Department of Environmental Protection (No. WM746).
文摘Extractability and mobility of Cu and Zn and their relationships with 1) accumulation of Cu and Zn and 2) soil pH were studied in three sandy soils (Wabasso, Ankona, and Winder) from commercial citrus groves in Florida, USA. The soils, with a broad range of Cu and Zn concentrations, were fractionated by a modified procedure of Amacher, while Cu and Zn mobility were evaluated using column leaching. The extractability of Cu and Zn increased with decreasing soil pH. Also with increasing total soil Cu and Zn for extractable Cu in the Wabasso sand a threshold level, where the metal extraction rate increased, was noted at 100 mg kg-1, whereas for extractable Zn in the Wabasso sand the threshold level was found at 60 mg kg-1 and in the Ankona sand at 120 mg kg-1. These results suggested that the release potential of Cu and Zn was greater in the Wabasso sand than in the Ankona sand. The column leaching experiment showed that at total soil Cu or Zn concentrations < 100 mg kg-1 all leachates had low Cu and Zn concentrations. However at total concentrations > 200 mg kg-1 for Cu and > 150 mg kg-1 for Zn with decreasing soil pH, the concentrations of both Cu and Zn in the leachates increased exponentially. Also in these sandy soils soluble Cu and Zn mainly originated from the exchangeable fractions, and pH was a key factor controlling Cu and Zn extractability and mobility.
基金TheNationalKeyBasicResearchDevelopmentandPlanningofChina (No .G19990 1180 9) TheNationalNaturalScienceFoundationofChina (No .
文摘The interaction effect of two sulfonylurea herbicides, bensulfuron methyl (B) and metsulfuron methyl(M), were tested on microbial biomass C, N, N mineralization and C/N ratio in a loamy sand soil. The herbicides were applied at various levels of: control (B0M0), 0.01 and 0.01 (B1M1), 0.01 and 0.1 (B1M2), and 0.01 and 1.0 (B1M3) μg/g soil. Determinations of soil microbial biomass C, N and N mineralization contents were carried out at 1, 3, 5, 7, 10, 15, 25 and 45 days after herbicides application. The results showed that the soil microbial biomass C (C mic ) and microbial biomass N (N mic ) decreased consistently with the increasing rates of herbicides. The results further indicated that B1M1 and B1M2 caused a significant reduction in C mic and N mic within first 10 and 7 days of incubation, respectively, as compared with the control. These reductions in C mic and N mic were also significant ( P =0.05) with B1M3 application especially within first 15 days of incubation. A significant reduction in N mineralization (N min) was observed with high doses (B1M2, B1M3) of herbicides within first 5 days of incubation, while low rate (B1M1) failed to produce any significant effect. An increase in the soil microbial biomass C:N ratio was also noted.
文摘Heavy metals can be introduced into urban soils at the same time. Therefore, their selective retention and competitive adsorption by the soils become of major importance in determining their availability and movement throughout the soil. In this study, the availability and mobility of six heavy metals in eight urban soils collected from different cities of Zhejiang Province, southeastern China were assessed using distribution coefficients(Kd) and retardation factor(Rf). The results showed that there were great differences in the Kd and Rfamong the tested soils. The adsorption sequences were Cr〉Pb〉Cu〉Cd〉Zn〉Ni, and the Kd decreased with increasing levels of metal addition. Ni generally has the lowest Rf values followed closely by Cd, and Zn whereas Cr and Pb reached the highest values. The results suggest that Ni and Zn have the highest mobility associated to the lowest adsorption, Cr and Pb present the opposite behavior. Correlation analysis indicates that soil pH, CaCO3 content, and cation exchange capacity (CEC) are key factors controlling the solubility and mobility of the metals in the urban soils.
文摘The eclogite gravels, which were found in the Mesozoic Fenghuangtai and Maotanchang formations on the northern margin of the Dabie orogenic belt, are rich in K-2O (1.21%), ∑REE (278μg/g), and LILE (such as Rb, Ba, K, Th, etc.), with high (La/Yb)-N ratios (14.4), on the basis of the analyses of major elements, rare-earth elements (REE) and trace elements. Their enrichment in LILE, notable Nb-Ta depletion through, and depletion in HFSE relative to REE in comparison with the primitive mantle and N-MORB indicate that the protoliths of the eclogite gravels were formed in an island-arc setting. According to the Th-Hf-Ta discrimination diagram, the protoliths of the eclogite gravels are characterized by volcanic arc basalts. Trace element data indicate that the subducted marine sediments were assimilated in the magma chamber, resulting in the enrichment of LILE in the protoliths. Therefore, the protoliths of the eclogite gravels are considered to have been formed in an inland-arc setting, indicating that there had developed a paleo-inland arc before Triassic collision between the North and South China blocks in the Dabie orogenic belt. There is a marked difference between the eclogite gravels and the eclogites developed along the Dabie orogenic belt, solely based on their geochemical data, especially REE. Therefore, the eclogite gravels may not be derived from eclogite terrains preserved in the Dabie orogenic belt.
基金Project supported by the National Basic Research Program (973) of China (No.2002CB410807)the Provincial Natural Science Foundation of Zhejiang(No.Y504247).
文摘A field experiment located in Taihu Lake Basin of China was conducted, by application of urea or a mixture of urea with manure, to elucidate the interception of nitrogen (N) export in a typical rice field through "zero-drainage water management" combined with sound irrigation, rainfall forecasting and field drying. N concentrations in floodwater rapidly declined before the first event of field drying after three split fertilizations, and subsequently tended to rearm to the background level. Before the first field drying, total particulate nitrogen (TPN) was the predominant N form in floodwater of plots with no N input, dissolved inorganic nitrogen (DIN) on plots that received urea only, and dissolved organic nitrogen (DON) on plots treated with the mixture of urea and manure. Thereafter TPN became the major form. No N export was found from the rice field, but total nitrogen (TN) of 15.8 kg/hm^2 was remained, mainly due to soil N sorption. The results recommended the zero-drainage water management for full-scale areas for minimizing N export.
基金funded by the Key Technologies R&D Program of China during the 12th Five-Year Plan period(2011BAD32B01)the National Natural Science Foundation of China(40875070)the Research Fund for Doctoral Program of Higher Education,China(20100101110035)
文摘Combined with remote sensing data and meteorological data, cold damage risk was assessed for planting area of double cropping rice (DCR) in Hunan Province, China. A new methodology of cold damage risk assessment was built that apply to grid and have clear hazard-affected body. Each station cold damage annual frequency and average annual intensity of cold damage was calculated by using 1951-2010 station daily mean temperature and simple cold damage identification index. On this basis, average annual cold damage risk index was obtained by their product. The spatial analysis models of cold damage risk index about double-season early rice (DSER) and double-season later rice (DSLR) were established respectively by the relation of average annual cold damage risk index and its geographic factors. Critical threshold of level of average annual cold damage risk index for DSER and DSLR were respectively divided by the correlative equation of cold damage annual frequency and average annual intensity of cold damage. 2001-2010 planting area of DCR, acquired by time series analysis of MOD09AI 8-d composite land surface reflectance product, was as target of assessment. The results show average annual intensity of cold damage is exponential function of cold damage annual frequency, average annual cold damage risk index is directly proportional to cold damage cumulant and cold damage annual frequency, and is inversely proportional to happen times of cold damage and the square of statistical time sequence length. Cold damage risk of DSER is higher than DSLR in Hunan Province. In the 10-yr stacking map, DCR planting in low risk area accounted for 11.92% of total extraction area, in moderate risk area accounted for 69.62%, in high risk area accounted for 18.46%. According to the cold damage risk assessment result, DCR production can be guided to reduce cold damage losses.
基金supported by the National Key Technologies R&D Program of China (2011BAD32B01)the Ph D Programs Foundation of Ministry of Education of China (20100101110035)
文摘The normalized difference vegetation index (NDVI) has proven to be typically employed to assess terrestrial vegetation conditions. However, one limitation of NDVI for drought monitoring is the apparent time lag between rainfall deficit and NDVI response. To better understand this relationship, time series NDVI (2000-2010) during the growing season in Sichuan Province and Chongqing City were analyzed. The vegetation condition index (VCI) was used to construct a new drought index, time-integrated vegetation condition index (TIVCI), and was then compared with meteorological drought indices-standardized precipitation index (SPI), a multiple-time scale meteorological-drought index based on precipitation, to examine the sensitivity on droughts. Our research findings indicate the followings: (1) farmland NDVI sensitivity to precipitation in study area has a time lag of 16-24 d, and it maximally responds to the temperature with a lag of about 16 d. (2) We applied the approach to Sichuan Province and Chongqing City for extreme drought monitoring in 2006 and 2003, and the results show that the monitoring results from TIVCI are closer to the published China agricultural statistical data than VCI. Compared to VCI, the best results from TIVCI3 were found with the relative errors of -4.5 and 6.36% in 2006 for drought affected area and drought disaster area respectively, and 5.11 and -5.95% in 2003. (3) Compared to VCI, TIVCI has better correlation with the SPI, which indicates the lag and cumulative effects of precipitation on vegetation. Our finding proved that TIVCI is an effective indicator of drought detection when the time lag effects between NDVI and climate factors are taken into consideration.
基金Project supported by the National Natural Science Foundation of China (Nos. 30230230, 40471069, and 30070429).
文摘The response of tomato (Lycopersicon esculentum) plants basically fertilized with 0.3 g N per plant of compound fertilizer with a N:P2O5:K2O ratio of 20:10:20 to sticks of polyolefin-coated fertilizer (POCF) (LongT0 with a N:P2Os:K2O ratio of 14:12:14) applied 23 d after transplanting was investigated using rooting boxes in the greenhouse. The results at 26 and 40 d after stick fertilizer treatment showed that the use of the stick fertilizer greatly increased the production of many new fine roots from the tomato plants. Compared to the unfertilized control, root length and root length density in the stick fertilizer treatment increased by 3.6-6.7 fold. In the soil zones near the stick fertilizer, root weight and root mass density were also significantly higher for the stick fertilizer treatment. Additionally, the use of the stick fertilizer increased the N, P and K concentrations in the leaves and stems of the tomato plants. The new fine roots growing near the stick fertilizer not only absorbed more nutrients and translocated them to the shoots, but also contained more nutrients within themselves. The soil ammonium and nitrate N data showed that N released from the stick fertilizer played a major role in inducing the production of new fine roots. These results indicated that stick fertilizer could be used as an alternative to the co-situs application technique to change and control the root distribution of crops as well as to increase the potential capacity of roots for water and nutrient absorption.
文摘The rapid growth and intensification of freshwater fishery can cause imbalances between phosphorus (P) input in feed and its output in produce. This aquaculture can result in enriching exogenous P in fishponds and, consequently, accelerates the process of eutrophication. To assess relations among input, accumulation, release of P and as a consequence degrading water quality in terms of chlorophyll-a (Chl-a) in freshwater fishponds, fourteen fishponds with feed supply, nine fishponds without feed supply, and five nonfish ponds in Shaoxing Plain, southeast China were selected for comparing P accumulation in their waters and surface sediments. Surface sediment samples were collected from each pond to evaluate their total P, water soluble P, Olsen P, algal available P, and P fractions. Water samples were also collected from the ponds to measure concentrations of dissolved P and Chl-a. Total P in the sediments ranged from 0.88 to 1.73 g/kg in the fishponds with feed supply, that in the non-fish ponds ranged from 0.47 to 0.86 g/kg. Organic P, accounted for 23% to 60% of total P in the sediments, was an important P fraction and increased linearly with increasing organic matter. Long-term application of feeds resulted in increased P availability in the bottom sediments and degradation of water quality in the freshwater fishponds. Compared with non-fish ponds, sediments from the feed-supplied fishponds contained considerably higher Olsen P, algal available P, and water soluble P. Higher proportions of the labile P (NH4Cl-P) and potentially labile P (NaOH-IP) were also found in the sediments from the fishponds. High solubility of P in the sediments resulted in elevation of P and chlorophyll-a concentration in the pond water. The dissolved P concentration in the pond water increased in the order of non-fish ponds (12μg/L) 〈 fishponds without feed supply (24 μg/L) 〈 fishponds with feed supply (66 μg/L). Linear correlations between concentrations of total P, Olsen-P, algal available P, water-soluble P and P concentration in saturation extracts in the sediments and dissolved P in the pond water indicated that there was a buffering action of the sediment constituents on the dissolved P.
基金This paper was supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. 2005CB 121104) and the National Natural Science Foundation of China (No. 40471064).
文摘Afforestation in sandy soils can cause soil acidification and affect Cu and Zn release. The behaviors of Cu and Zn release from contaminated arable sandy soils were investigated in the laboratory with the methods of simulated acidification of the soils. The results showed that soil acidification could change chemical forms of Cu and Zn in the soils, impel the transformation of Cu and Zn from carbonate associated fractions to exchangeable, organic matter and oxides associated fractions, and thus increase the release potential of Cu and Zn in the soils. The effect of the acidification on Zn leaching was more significant than that of Cu. Water solubility of Cu and Zn in the soils was increased with decreasing pH, and the solubility of Cu and Zn was increased exponentially at pH 3.8-4.5, and 6.2-6.5, respectively.
文摘The Editor-in-Chief has retracted this article as it contains material that substantially overlaps with the following article(Mensah et al.2016).Mengistu Teshome Wondimu does not agree to this retraction.Zebene Asfaw Nigussie and Muktar Moham-med Yusuf have not responded to any correspondence from the editor/publisher about this retraction.