An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the...An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the full quantum mechanical framework.The optical absorption dynamics in both weak and strong couplings are discussed and compared.The excitonic absorption spectra show the Autler-Townes doublets for the resonance terahertz field,a replica peak for the non-resonance terahertz field,and the electromagnetically induced transparency phenomenon for modulating the decay rate of the second electron state in the weak coupling.In particular,the electromagnetically induced transparency phenomenon window range is discussed.In the strong coupling region,the multi-order energy level resonance splitting due to the strong optical field is found.There are three(non-resonance terahertz field) or four(resonance terahertz field) peaks in the optical absorption spectra.This work provides a simple and convenient approach to deal with the optical absorption in the exciton system.展开更多
Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica...Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica peak and the Autler-Townes splitting of various dressed states are systematically studied in undoped asymmetric double quantum wells by taking account of multiple factors,such as the frequency of the varied terahertz field and the strength of the resonant terahertz field.Each electron subband splits into two dressed states when the resonant terahertz field is applied in the absence of the varied terahertz field,the optical absorption spectrum shows the first-order Autler-Townes splitting of the electron subbands.When a varied terahertz field is added into the resonant system,the replica peak and the second-order Autler-Townes splitting of the dressed states near the band edge respectively emerge when the varied terahertz field is non-resonant and resonant with these dressed states.When the strength of the resonant terahertz field is increased,the first-order Autler-Townes double peaks and the replica peak in the optical absorption spectrum shift with the shifts of the dressed states.The presented results have potential applications in electro-optical devices.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 10647132)the Science Foundation from the Education Department of Hunan Province,China (Grant No. 10A100)
文摘An approach for solving the excitonic absorption in a semiconductor quantum well driven by an intense terahertz field is presented.The formalism relies on the stationary single-photon Schro¨dinger equation in the full quantum mechanical framework.The optical absorption dynamics in both weak and strong couplings are discussed and compared.The excitonic absorption spectra show the Autler-Townes doublets for the resonance terahertz field,a replica peak for the non-resonance terahertz field,and the electromagnetically induced transparency phenomenon for modulating the decay rate of the second electron state in the weak coupling.In particular,the electromagnetically induced transparency phenomenon window range is discussed.In the strong coupling region,the multi-order energy level resonance splitting due to the strong optical field is found.There are three(non-resonance terahertz field) or four(resonance terahertz field) peaks in the optical absorption spectra.This work provides a simple and convenient approach to deal with the optical absorption in the exciton system.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10647132)the Hunan Provincial Education Department Funded Project,China (Grant No. 10A100)
文摘Optical absorption is investigated for asymmetric double quantum wells driven by a resonant terahertz field and a varied terahertz field,both polarized along the growth direction.Rich nonlinear dynamics of the replica peak and the Autler-Townes splitting of various dressed states are systematically studied in undoped asymmetric double quantum wells by taking account of multiple factors,such as the frequency of the varied terahertz field and the strength of the resonant terahertz field.Each electron subband splits into two dressed states when the resonant terahertz field is applied in the absence of the varied terahertz field,the optical absorption spectrum shows the first-order Autler-Townes splitting of the electron subbands.When a varied terahertz field is added into the resonant system,the replica peak and the second-order Autler-Townes splitting of the dressed states near the band edge respectively emerge when the varied terahertz field is non-resonant and resonant with these dressed states.When the strength of the resonant terahertz field is increased,the first-order Autler-Townes double peaks and the replica peak in the optical absorption spectrum shift with the shifts of the dressed states.The presented results have potential applications in electro-optical devices.