期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Heat treatment and granule medium internal highpressure forming of AA6061 tube 被引量:3
1
作者 BI Jiang ZHAO Chang-cai +3 位作者 BI Meng-meng DU Bing CHEN Xiao-hua DONG Guo-jiang 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第5期1040-1049,共10页
The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the form... The new forming process of AA6061 alloy tube, including solution treatment, granule medium internal high-pressure forming and aging treatment, was developed. The AA6061 alloy tube via heat treatment satisfied the forming requirement, and the granule medium internal high pressure forming method for AA6061 alloy tube was also realized by using convenient implementation with low requirement of equipment and flexible design of product. At a solution temperature of 560℃ and time of 120 min, the elongation of the AA6061 extruded tube increases by 300% and the strength and the hardness dramatically decrease too. Therefore, the AA6061 alloy tube meets the requirement of internal high-pressure forming because of the improvement of formability. The experiments shows that the strength and hardness of AA6061 alloy workpiece recover to that of the as-received alloy at an aging temperature of 180℃ and time of 360 min, and the strength of AA6061 alloy workpiece is equal to the base alloy. The typical parts of convex ring tube, stepped shaft tube and hexagonal tube were successfully produced in lab by using the present forming method. The forming tests show that the maximum expansion ratio(MER) of the AA6061 extruded tube increases by 25.5% and the material properties of formed AA6061 alloy tube reached the performance of as-received alloy. 展开更多
关键词 aluminum alloy TUBE solution TREATMENT aging TREATMENT GRANULE MEDIUM INTERNAL high pressure FORMING
下载PDF
A Numerical Investigation into the Influence of Electrode-Related Parameters on Electroosmotic Mixing and Related Mechanisms
2
作者 Chunsheng Wang Dongxing Shang 《Fluid Dynamics & Materials Processing》 EI 2020年第3期465-473,共9页
Electroosmosis is an effective method for liquid mixing.It is associated with the motion of a liquid in a microchannel induced by an applied electric field.In this manuscript,a numerical model is elaborated and implem... Electroosmosis is an effective method for liquid mixing.It is associated with the motion of a liquid in a microchannel induced by an applied electric field.In this manuscript,a numerical model is elaborated and implemented for the case of a straight channel with a single electrode pair.In particular,the Navier-Stokes equation combined with the Convection-diffusion and Helmholtz-Smoluchowski equation are used to simulate the resulting flow field.The influence of various electrode parameters on the mixing efficiency and the related mechanisms are investigated.The numerical results show that a pair of eddies are produced alternately by the changing electric field.The two liquids are mixed by the interaction of this pair of eddies.The length of the electrode affects the distance between these eddies,while the amplitude and frequency of electrode voltage determine the intensity and frequency of the eddy current,respectively.It is shown that by tuning properly the electrode parameters,the mixing efficiency can reach 97.5%.The optimization process implemented in the present work may lead in the future to a new approach to obtain controllable electroosmotic flow in microfluidic platforms. 展开更多
关键词 Electro-osmotic MICRO-CHANNELS electrode parameters
下载PDF
Hot Granules Medium Pressure Forming Process of AA7075 Conical Parts 被引量:16
3
作者 DONG Guojiang ZHAO Changcai +1 位作者 PENG Yaxin LI Ying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期580-591,共12页
High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing ... High strength aluminum alloy plate has a low elongation at room temperature, which leads to the forming of its components need a high temperature. Liquid or gas is used as the pressure-transfer medium in the existing flexible mould forming process, the heat resistance of the medium and pressurizing device makes the application of aluminum alloy plate thermoforming restricted. To solve this problem, the existing medium is replaced by the heat-resisting solid granules and the general pressure equipments are applied. Based on the pressure-transfer performance test of the solid granules medium, the feasibility that the assumption of the extended Drucker-Prager linear model can be used in the finite element analysis is proved. The constitutive equation, the yield function and the theoretical forming limit diagram(FLD) of AA7075 sheet are established. Through the finite element numerical simulation of hot granules medium pressure forming(HGMF) process, not only the influence laws of the process parameters, such as forming temperature, the blank-holder gap and the diameter of the slab, on sheet metal forming performance are discussed, but also the broken area of the forming process is analyzed and predicted, which are coincided with the technological test. The conical part whose half cone angle is 15° and relative height H/d0 is 0.57, is formed in one process at 250℃. The HGMF process solves the problems of loading and seal in the existing flexible mould forming process and provides a novel technology for thermoforming of light alloy plate, such as magnesium alloy, aluminium alloy and titanium alloy. 展开更多
关键词 granules medium aluminum alloy sheet DRAWING hot forming forming limit diagram
下载PDF
Process of back pressure deep drawing with solid granule medium on sheet metal 被引量:8
4
作者 董国疆 赵长财 曹秒艳 《Journal of Central South University》 SCIE EI CAS 2014年第7期2617-2626,共10页
The experimental die apparatus of the solid granules medium forming on sheet metal was designed and manufactured.Typical parts,such as conical,parabolic,cylindrical and square-box-shaped components,were successfully t... The experimental die apparatus of the solid granules medium forming on sheet metal was designed and manufactured.Typical parts,such as conical,parabolic,cylindrical and square-box-shaped components,were successfully trial-produced as well.According to the analysis of the changing trends of the cross-section shape and the wall thickness during the process,it can be found that the shape of the free deformation zone of the sheet metal,which is the most critical thinning area,can be described as an approximately spherical cap.According to this forming feature,back pressure deep drawing technology with solid granules medium on sheet metal was proposed to restrain drastic thinning at the bottom of the part through the joint friction effect of solid granules medium,the back pressure tringle and the sheet metal.Therefore,the deep drawing limit of the sheet metal is significantly improved.In order to fabricate thin-walled rotary parts with great drawing ratio and complex cross-sections,a finite element model based on the material property test of the solid granules medium was established to optimize the scheme of the back pressure deep drawing.The effects on the forming performance of sheet metal from back pressure load and the approach of blank holding control were analyzed through this model. 展开更多
关键词 solid granules medium forming DRAWING sheet metal finite element simulation
下载PDF
Frictional characteristics of sheet metals with superimposed ultrasonic vibrations 被引量:6
5
作者 CAO Miao-yan LI Jian-chao +3 位作者 LIU Yan-yang YUAN Ya-ning ZHAO Chang-cai DONG Guo-jiang 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第8期1879-1887,共9页
The forming performance of sheet metals in the deep-drawing process with ultrasonic vibrations can be improved by the surface effect between the sheet metal and the die.A sheet metal friction test with ultrasonic vibr... The forming performance of sheet metals in the deep-drawing process with ultrasonic vibrations can be improved by the surface effect between the sheet metal and the die.A sheet metal friction test with ultrasonic vibrations is performed to explore the cause of the surface effect.The frictional characteristics are investigated,and the corresponding friction expressions are established based on the contact mechanics and the elastic–plastic contact model for rough surfaces.Friction is caused by the elastic–plastic deformation of contacting asperities under normal loads.The actual contacting region between two surfaces increases with normal loads,whereas the normal distance decreases.The normal distance between the contacting surfaces is changed,asperities generate a tangential deformation with ultrasonic vibrations,and the friction coefficient is eventually altered.Ultrasonic vibrations are applied on a 40Cr steel punch at the frequency of 20 kHz and the amplitude of 4.2μm.In the friction tests,the punch is perpendicular to the surface of the magnesium alloy AZ31B sheet metals and is sliding with a relative velocity of 1 mm/s.The test results show that the friction coefficient is decreased by approximately 40%and the theoretical values are in accordance with the test values;Ultrasonic vibrations can clearly reduce wear and improve the surface quality of parts. 展开更多
关键词 FRICTION ultrasonic vibrations sheet metals contact model
下载PDF
Analysis on Collapse Strength of Casing Wear 被引量:3
6
作者 LIANG Erguo LI Zifeng +2 位作者 HAN Yong LI Guoqin GUO Peipei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第3期613-619,共7页
Carrying capacity of the casing will reduce after the casing is worn, which seriously affects the subsequent well drilling, well completion, oil extraction and well repair. A lot of researches on calculation of casing... Carrying capacity of the casing will reduce after the casing is worn, which seriously affects the subsequent well drilling, well completion, oil extraction and well repair. A lot of researches on calculation of casing wear collapse strength have been done, but few of them focus on collapsing failure mechanism, and influencing factors and law of collapse strength. So, significant difference between estimated value and actual value of collapse strength comes into being. By theoretical analysis, numerical simulation and actual test, the collapsing failure mechanism of casing wear as well as the influencing factors and laws of collapse strength are investigated, and the investigation results show that collapse of crescent casing wear belongs to 'three hinged' instability. The severely-worn position on the casing is yielded into the plastic zone first then deformed greatly, which causes the plastic instability of the whole structure. The casing wear collapse strength presents changes of exponent, power function and linear trend with the residual casing wall thickness, wear radius and axial load, respectively. When the flexibility is less than 10°/30 m, the borehole bending has less impact on casing collapse strength. Thus, the computation model for the casing wear collapsing strength is established by introducing wear radius coefficient and casing equivalent yield strength, at the same time, the model is tested. The test results show that the relative error for the computation model is less than 5%. The research results provide a basis for design of the casing string strength and evaluation of down-hole safety. 展开更多
关键词 casing wear collapsing failure collapse strength borehole bending computation model
下载PDF
Research on technological parameters of pressure forming with hot granule medium on AA7075 sheet 被引量:2
7
作者 董国疆 赵长财 +2 位作者 赵建培 押媛媛 曹秒艳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第4期765-777,共13页
Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of ... Hot granule medium pressure forming (HGMF) process is a new process in which granule medium replaces the medium in existing flexible-die hot forming process, such as liquids, gases or viscous medium. Hot forming of light alloy sheet parts can be realized based on the properties of granule medium, such as withstanding high temperature and pressure, filling well, sealing and loading easily. In this work, the forming of AA7075 cylindrical parts by HGMF process is taken as an example to establish the constitutive relation and forming limit diagram (FLD) of AA7075 sheet which is related to temperature by hot uniaxial tensile test of sheet metal. Based on the assumption that granule medium is applied to extended Drucker-Prager linear material model, the finite element model of HGMF process is established and the effect of technological parameters, such as forming temperature, blank-holder gap and drawing ratio, on the sheet metal formability, is studied. The limit drawing ratio curve of AA7075 cylindrical parts at forming temperature of 175-300 ℃ is obtained by HGMF process test, and the limit drawing ratio reaches the maximum value of 1.71 at 250 ℃. The results of numerical simulation are consistent with the results of process test, and the forming force, distribution of wall thichness and form of instability are predicted correctly, which provides reference for the application of HGMF process. 展开更多
关键词 granule medium aluminum alloy sheet DRAWING hot forming forming limit diagram
下载PDF
Chaos and chaotic control in a relative rotation nonlinear dynamical system under parametric excitation 被引量:1
8
作者 时培明 韩东颖 刘彬 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第9期112-117,共6页
This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under par... This paper studies the chaotic behaviours of a relative rotation nonlinear dynamical system under parametric excitation and its control. The dynamical equation of relative rotation nonlinear dynamical system under parametric excitation is deduced by using the dissipation Lagrange equation. The. criterion of existence of chaos under parametric excitation is given by using the Melnikov theory. The chaotic behaviours are detected by numerical simulations including bifurcation diagrams, Poincare map and maximal Lyapunov exponent. Furthermore, it implements chaotic control using nomfeedback method. It obtains the parameter condition of chaotic control by the Melnikov theory. Numerical simulation results show the consistence with the theoretical analysis. The chaotic motions can be controlled to periodmotions by adding an excitation term. 展开更多
关键词 relative rotation nonlinear dynamical system parametric excitation chaotic control
原文传递
Instability analysis of free deformation zone of cylindrical parts based on hot-granule medium-pressure forming technology 被引量:1
9
作者 Miao-yan CAO Chang-cai ZHAO +1 位作者 Guo-jiang DONG Sheng-fu YANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第8期2188-2196,共9页
The cylindrical part of sheet metal based on hot-granule medium-pressure forming (HGMF) technology was investigated.The stress functions of the free deformation zone and the fracture instability theory were combined t... The cylindrical part of sheet metal based on hot-granule medium-pressure forming (HGMF) technology was investigated.The stress functions of the free deformation zone and the fracture instability theory were combined to establish the analytical expression of the critical pressure of punch. The results show that the active friction between the granule medium and the sheet metal, as well as the non-uniform internal pressure presented by the solid granule medium, can obviously improve the forming performance of the sheet metal. The critical pressure of punch increases with the increment of the friction coefficient between the granule medium and sheet metal, as well as the plastic strain ratio, whereas it decreases with the increase of the material-hardening exponent. Furthermore, the impact on the critical pressure from high to low order is the plastic strain ratio, the friction coefficient,and material-hardening exponent. The deep-drawing experiment with HGMF technology on AZ31B magnesium alloy sheet verified the instability theory.Key words: hot-granule 展开更多
关键词 hot-granule medium-pressure forming DEEP-DRAWING instability cylindrical part
下载PDF
Frictional characteristics of granular system under high pressure 被引量:1
10
作者 曹秒艳 彭雅新 +2 位作者 赵长财 董国疆 杜冰 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第5期1132-1141,共10页
In order to reveal the force transmission features of the granules in the solid granule medium forming(SGMF) technology,the frictional characteristics of the non-metallic granule medium(NGM) under high pressure were i... In order to reveal the force transmission features of the granules in the solid granule medium forming(SGMF) technology,the frictional characteristics of the non-metallic granule medium(NGM) under high pressure were investigated by tests and simulations.And the relevant changing curves of the internal friction coefficient of the granular system under different normal pressures were obtained by self-designed shear test.By the granule volume compression test,the accurate discrete element simulation parameters were obtained,based on this,the discrete element method(DEM) was adopted to reveal the evolution law of the NGM granules movement in the sample shear process from the microscopic view.Based on the DEM,the influence of granule diameter,surface friction coefficient,normal pressure and shear velocity on the internal friction coefficient of the granular system were studied.And the parameters were conducted to be dimensionless by introducing the inertia coefficient.Finally,the expression showing power-law relationship of inertia coefficient,surface friction coefficient and internal friction coefficient is obtained. 展开更多
关键词 GRANULE friction coefficient discrete element method inertia coefficient
下载PDF
Dimensionless Variation of Seepage in Porous Media with Cracks Stimulated by Low-Frequency Vibration
11
作者 Liming Zheng Xiaodong Han +2 位作者 Xinjun Yang Qingzhong Chu Guanghui Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第3期1055-1080,共26页
Pulse excitation or vibration stimulation was imposed on the low permeable formation with cracks to enhance the production or injection capacity.During that process,a coupling of wave-induced flow and initial flow in ... Pulse excitation or vibration stimulation was imposed on the low permeable formation with cracks to enhance the production or injection capacity.During that process,a coupling of wave-induced flow and initial flow in dual-porous media was involved.Researchers had done much work on the rule of wave propagation in fractured porous media,whereas attentions on the variation law of flow in developing low permeable formation with cracks under vibration stimulation were not paid.In this study,the effect of low-frequency vibration on the seepage in dual-porous media was examined for the application of wave stimulation technology in developing reservoirs with natural cracks.A model for seepage of single-phase liquid in porous media with cracks under low-frequency vibration excitation was built by combining wave propagating theory for porous media with cracks and dual-porous media seepage mechanics.A governing equation group for the model,which was expressed by dimensionless fluid and solid displacements,was derived and solved with a numerical method.Variable physical properties were simulated to check the applicability of external low-frequency vibration load on dual-porous media and a parametric study for various vibration parameters.Stimulation of low-frequency vibration affected flow velocities of crack and rock matrix fluids.Compared with that in single-porous media,the stimulation effect on the fluid inner matrix of dual-porous media was relatively weakened.Different optimal vibration parameters were needed to increase the channeling flow between the crack and rock matrix or to only promote the flow velocity in the rock matrix.The theoretical study examines wave-coupled seepage field in fractured porous media with results that are applicable for low-frequency stimulation technology. 展开更多
关键词 Low-frequency vibration wave-induced flow dual-porous media CRACK dimensionless.
下载PDF
Stress-strain analysis on AA7075 cylindrical parts during hot granule medium pressure forming 被引量:1
12
作者 董国疆 杨卓云 +2 位作者 赵建培 赵长财 曹秒艳 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第11期2845-2857,共13页
Hot granule medium pressure forming(HGMF) is a technology in which heat-resistant granules are used to replace liquids or gases in existing flexible-die forming technology as pressure-transfer medium. Considering the ... Hot granule medium pressure forming(HGMF) is a technology in which heat-resistant granules are used to replace liquids or gases in existing flexible-die forming technology as pressure-transfer medium. Considering the characteristic of granule medium that seals and loads easily, the technology provides a new method to realize the hot deep-drawing forming on high strength aluminum alloy sheet. Based on the pressure-transfer performance test of granule medium and the material performance test of AA7075-T6 sheet, plastic mechanics analysis is conducted for the areas, such as the flange area, force-transfer area and free deforming area, of cylindrical parts deep-drawn by HGMF technology, and the function relation of forming pressure is obtained under the condition of nonuniform distribution of internal pressure. The comparison between theoretical result and experimental data shows that larger deviation occurs in the middle and later period of forming process, and the maximum theoretical forming force is less than the experimental value by 24.6%. The variation tendency of the theoretical thickness curve is close to the practical situation, and the theoretical value basically agrees well with experimental value in the flange area and the top area of spherical cap which is in the free deforming area. 展开更多
关键词 granule medium aluminum alloy sheet DEEP-DRAWING hot forming limit drawing ratio
下载PDF
Semantic analysis and retrieval of spatial data based on the uncertain ontology model in Digital Earth
13
作者 Shengtao Sun Lizhe Wang +1 位作者 Rajiv Ranjan Aizhi Wu 《International Journal of Digital Earth》 SCIE EI CSCD 2015年第1期3-16,共14页
Metadata are the information about and description of data.In Digital Earth,metadata become variant and heterogeneous with many uncertainties.This paper studies uncertain features in the generation and application of ... Metadata are the information about and description of data.In Digital Earth,metadata become variant and heterogeneous with many uncertainties.This paper studies uncertain features in the generation and application of metadata,and two types of uncertainties(incomplete and imprecise)are described based on semantic quantitative measurement method semantic relationship quantitative measurement based on possibilistic logic and probability statistic(SRQ-PP).Moreover,in the case study,we apply two types of quantitative measurements based on SRQ-PP to describe incomplete(uncertain)knowledge and imprecise(vague)information separately in spatial data service retrieval,which in turn is helpful to identify additional potential data resources and provide a quantitative analysis of the results. 展开更多
关键词 METADATA semantic ontology uncertainty measurement spatial data digital earth
原文传递
Nonlinear Dynamics of Torsional Vibration for Rolling Mill′s Main Drive System Under Parametric Excitation 被引量:17
14
作者 SHI Pei-ming LI Ji-zhao +2 位作者 JIANG Jin-shui LIU Bin HAN Dong-ying 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第1期7-12,共6页
The jointed shaft in the drivelines of the rolling mill, with its angle continuously varying in the production, has obvious impact on the stability of the main drive system. Considering the effect caused by the joint ... The jointed shaft in the drivelines of the rolling mill, with its angle continuously varying in the production, has obvious impact on the stability of the main drive system. Considering the effect caused by the joint angle and friction force of roller gap, the nonlinear vibration model of the main drive system which contains parametric excitation stiffness and nonlinear friction damping was established. The amplitude-frequency characteristic equation and bifurcation response equation were obtained by using the method of multiple scales. Depending on the bifurcation response equation, the transition set and the topology structure of bifurcation curve of the system were obtained by using the singularity theory. The transition set can separate the system into seven areas, which has different bifurcation forms respectively. By taking the 1 780 rolling mill of Chengde Steel Co for example, the simulation and analysis were performed. The amplitude-frequency curves under different joint angles, damping coefficients, and nonlinear stiffness were given. The variations of these parameters have strong influences on the stability of electromechanical resonances and the characteristic of the response curves. The best angle of the jointed shaft is 4.761 3° in this rolling mill. 展开更多
关键词 rolling mill main drive system torsional vibration parametric excitation joint angle SINGULARITY
原文传递
Development of an ultrahard nanotwinned cBN micro tool for cutting hardened steel 被引量:6
15
作者 CHEN Jun Yun JIN Tian Ye TIAN Yong Jun 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第6期876-881,共6页
Binderless nanotwinned cubic boron nitride(nt-cBN) synthesized from onion-structured BN precursors under high pressure and high temperature shows a very fine microstructure consisting of densely lamellar nanotwins(ave... Binderless nanotwinned cubic boron nitride(nt-cBN) synthesized from onion-structured BN precursors under high pressure and high temperature shows a very fine microstructure consisting of densely lamellar nanotwins(average thickness of 4 nm) within nanograins. The unique nanotwinned microstructure offers high hardness, wear resistance, fracture toughness, and thermal stability which are essential for advanced cBN tool materials. Thus, a circular micro tool of nt-cBN was fabricated using femtosecond laser contour machining followed by focused ion beam precision milling. Thereafter turning tests were performed on hardened steel using the studied micro tool. To evaluate the cutting performance, the machined surface quality and subsurface damage of the hardened steel were characterized. The wear mechanism of the nt-cBN micro tool was also investigated. It is found that the fabricated nt-cBN micro tool can generate high quality surface with surface roughness less than 7 nm and nanograin subsurface of about 500 nm deep. In addition, abrasive wear is found to be the dominant wear mechanism of the nt-cBN micro tool in turning hardened steel. These results indicate that nt-cBN has outstanding potential for ultra-precision cutting hardened steel. 展开更多
关键词 nanotwinned cBN tool fabrication cutting tool micro machining hardened steel
原文传递
Effect of M-EMS Parameters on Quality of 82B High Carbon Steel 被引量:1
16
作者 ZHANG Jing WANG En-gang +1 位作者 XU Xiu-jie HE Ji-cheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2012年第S2期929-932,共4页
In this paper,the rule of M-EMS on Φ250mm 82B high carbon steel during the casting process was investigated by numerical simulation and experiments.The influence of M-EMS current and frequency on distribution of flow... In this paper,the rule of M-EMS on Φ250mm 82B high carbon steel during the casting process was investigated by numerical simulation and experiments.The influence of M-EMS current and frequency on distribution of flow field was researched.The simulation results show that:At the same current,velocity increases with the frequency increase.With the increase of frequency,the velocity first decreases and then increases as the frequency increase along the casting direction. At the same frequency,velocity increases with the current increase.The turbulence zone also become more strenuous, especially in free surface,the suitable turbulence is benefit to uniform steel temperature.Experiment results show that the quality defects of 82B high carbon steel can be significantly improved with M-EMS.The zone of central pipe decreases. With the increase of current,equiaxed zone ratio increases.Considered the results of numerical simulation and experiments, the optimized EMS parameters of Φ250mm high carbon steel are the stirring current of 480A and the stirring frequency of 3Hz,which can improve strand quality greatly. 展开更多
关键词 82B electromagnetic stirring flow Field numerical simulation billet quality
原文传递
Absorption enhancement of ultrathin crystalline silicon solar cells with frequency upconversion nanosphere arrays
17
作者 Chenbo Wang Shuai Zhao +3 位作者 Fei Bian Daxue Du Chunsheng Wang Zhaopeng Xu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2020年第1期118-123,共6页
A design of ultrathin crystalline silicon solar cells patterned withα-NaEr0.2Y0.8F4 upconversion nanosphere(NSs)arrays on the surface was proposed.The light trapping performance ofα-NaEr0.2Y0.8F4 NSs with different ... A design of ultrathin crystalline silicon solar cells patterned withα-NaEr0.2Y0.8F4 upconversion nanosphere(NSs)arrays on the surface was proposed.The light trapping performance ofα-NaEr0.2Y0.8F4 NSs with different ratios of sphere diameter to sphere pitch was systematically studied by COMSOL Multiphysics.The influence of different NS diameters and ratio to the average optical absorption of ultrathin crystalline silicon solar cell was calculated,as well as the short circuit current densities.The results show that the average optical absorption of solar cells with 2.33μm silicon covered byα-NaEr0.2Y0.8F4 NSs of 100 nm in diameter and 5.2 in ratio has improved by 8.5%compared to planar silicon solar cells with the same thickness of silicon.The light trapping performance of different thicknesses of silicon solar cells with the optimized configuration of NSs was also discussed.The results indicate that our structure enhances the light absorption.The presented model will be the basis for further simulations concerning frequency upconversion ofα-NaEr0.2Y0.8F4 materials. 展开更多
关键词 solar cells NANOSTRUCTURE NaYF4:Er3+ light TRAPPING
原文传递
Key machining characteristics in ultrasonic vibration cutting of single crystal silicon for micro grooves
18
作者 Jun-Yun Chen Tian-Ye Jin Xi-Chun Luo 《Advances in Manufacturing》 SCIE CAS CSCD 2019年第3期303-314,共12页
Structured complex silicon components have been widely used in solar cells,biomedical engineering and other industrial applications.As silicon is a typical brittle material,ultrasonic vibration cutting(UVC)is a promis... Structured complex silicon components have been widely used in solar cells,biomedical engineering and other industrial applications.As silicon is a typical brittle material,ultrasonic vibration cutting(UVC)is a promising method to achieve better cutting performance than conventional techniques.High-frequency ID UVC possesses higher nominal cutting speed and material removal rate than many 2D/3D UVC systems,and thus,it has great development potential in industrial applications of structured silicon components.However,few researchers have applied ID UVC to the cutting of structured silicon surfaces,since its main drawback is tool marks imprinted by the vibration on machined surface.In this study,to uncover the key machining characteristics under the condition of ID UVC,a series of tests involving diamond cutting grooves were first performed on the silicon surface.The machined surface and chips were subsequently measured and analyzed to evaluate the critical undeformed chip thickness,surface characteristics,and chip formation.Regarding the main drawback of ID UVC,a novel theoretical model was developed for predicting the length of tool marks and evaluating the impact of tool marks on the surface finish.The results demonstrated that the critical undeformed chip thickness of silicon reached 1030 nm under a certain vibration amplitude and that an array of micro grooves was generated at the plastic region with a surface roughness(7?a)as low as 1.11 nm.Moreover,the micro topography of the continuous chips exhibited discontinuous clusters of lines with diameters of dozens of nanometers,only composed of polysilicon.The novel theoretical model was able to predict the length of tool marks with low error.Thus,the impact of tool marks on the surface finish can be reduced and even eliminated with help of the model. 展开更多
关键词 Ultrasonic vibration cutting(UVC) Single crystal SILICON Micro groove CHIP Tool vibration mark
原文传递
Multi-objective parameter optimization for a single-shaft series-parallel plug-in hybrid electric bus using genetic algorithm 被引量:4
19
作者 CHEN Zheng ZHOU LiYan +2 位作者 SUN Yong MA ZiLin HAN ZongQi 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第8期1176-1185,共10页
Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu- lar powertrains due to its alterable operating modes, excellent fuel economy and strong ad... Recently, the single-shaft series-parallel powertrain of Plug-in Hybrid Electric Bus (PHEB) has become one of the most popu- lar powertrains due to its alterable operating modes, excellent fuel economy and strong adaptability for driving cycles. Never- theless, for configuring the PHEB with single-shaft series-parallel powertrain in the development stage, it still faces greater challenge than other configurations when choosing and matching the main component parameters. Motivated by this issue, a comprehensive multi-objectives optimization strategy based on Genetic Algorithm (GA) is developed for the PHEB with the typical powertrain. First, considering repeatability and regularity of bus route, the methods of off-line data processing and mathematical statistics are adopted, to obtain a representative driving cycle, which could well reflect the general characteristic of the real-world bus route. Then, the economical optimization objective is defined, which is consist of manufacturing costs of the key components and energy consumption, and combined with the dynamical optimization objective, a multi-objective op- timization function is put forward. Meanwhile, GA algorithm is used to optimize the parameters, for the optimal components combination of the novel series-parallel powertrain. Finally, a comparison with the prototype is carried out to verify the per- formance of the optimized powertrain along driving cycles. Simulation results indicate that the parameters of powertrain com- ponents obtained by the proposed comprehensive multi-objectives optimization strategy might get better fuel economy, meanwhile ensure the dynamic performance of PHEB. In contrast to the original, the costs declined by 18%. Hence, the strat- egy would provide a theoretical guidance on parameter selection for PHEB manufacturers. 展开更多
关键词 multi-objective parameter optimization single-shaft series-parallel powertrain plug-in hybrid electric bus (PHEB) genetic algorithm (GA) driving cycle city bus route
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部