In this paper, we show that a(2, 3) discrete variable threshold quantum secret sharing scheme of secure direct communication can be achieved based on recurrence using the same devices as in BB84. The scheme is devised...In this paper, we show that a(2, 3) discrete variable threshold quantum secret sharing scheme of secure direct communication can be achieved based on recurrence using the same devices as in BB84. The scheme is devised by first placing the shares of smaller secret pieces into the shares of the largest secret piece, converting the shares of the largest secret piece into corresponding quantum state sequences, inserting nonorthogonal state particles into the quantum state sequences with the purpose of detecting eavesdropping, and finally sending the new quantum state sequences to the three participants respectively. Consequently, every particle can on average carry up to 1.5-bit messages due to the use of recurrence. The control codes are randomly prepared using the way to generate fountain codes with pre-shared source codes between Alice and Bob, making three participants can detect eavesdropping by themselves without sending classical messages to Alice. Due to the flexible encoding, our scheme is also dynamic, which means that it allows the participants to join and leave freely.展开更多
基金Supported in part by an International Macquarie University Research Excellence Scholarship(i MQRES),Australian Research Council Grant DP0987734also supported by the National Basic Research Program of China(973 Program)under Grant No.2010CB923200+2 种基金the National Natural Science Foundation of China under No.61377067Fund of State Key Laboratory of Information Photonics and Optical Communications Beijing University of Posts and Telecommunications,China,National Natural Science Foundation of China under Grant Nos.61202362,61262057,61472433China Postdoctora Science Foundation under Grant No.2013M542560
文摘In this paper, we show that a(2, 3) discrete variable threshold quantum secret sharing scheme of secure direct communication can be achieved based on recurrence using the same devices as in BB84. The scheme is devised by first placing the shares of smaller secret pieces into the shares of the largest secret piece, converting the shares of the largest secret piece into corresponding quantum state sequences, inserting nonorthogonal state particles into the quantum state sequences with the purpose of detecting eavesdropping, and finally sending the new quantum state sequences to the three participants respectively. Consequently, every particle can on average carry up to 1.5-bit messages due to the use of recurrence. The control codes are randomly prepared using the way to generate fountain codes with pre-shared source codes between Alice and Bob, making three participants can detect eavesdropping by themselves without sending classical messages to Alice. Due to the flexible encoding, our scheme is also dynamic, which means that it allows the participants to join and leave freely.