High-entropy oxides(HEOs)are gaining prominence in the field of electrochemistry due to their distinctive structural characteristics,which give rise to their advanced stable and modifiable functional properties.This r...High-entropy oxides(HEOs)are gaining prominence in the field of electrochemistry due to their distinctive structural characteristics,which give rise to their advanced stable and modifiable functional properties.This review presents fundamental preparations,incidental characterizations,and typical structures of HEOs.The prospective applications of HEOs in various electrochemical aspects of electrocatalysis and energy conversion-storage are also summarized,including recent developments and the general trend of HEO structure design in the catalysis containing oxygen evolution reaction(OER)and oxygen reduction reaction(ORR),supercapacitors(SC),lithium-ion batteries(LIBs),solid oxide fuel cells(SOFCs),and so forth.Moreover,this review notes some apparent challenges and multiple opportunities for the use of HEOs in the wide field of energy to further guide the development of practical applications.The influence of entropy is significant,and high-entropy oxides are expected to drive the improvement of energy science and technology in the near future.展开更多
Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless...Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.展开更多
Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent...Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs.展开更多
Lignocellulosic biomass is the largest renewable hydrocarbon resource on earth.Converting cellulose,one of the major components of lignocellulose,powered by solar energy is a promising way of providing lowcarbon-footp...Lignocellulosic biomass is the largest renewable hydrocarbon resource on earth.Converting cellulose,one of the major components of lignocellulose,powered by solar energy is a promising way of providing lowcarbon-footprint energy chemicals such as H_(2),HCOOH,CO,and transportation fuels.State-of-the-art biorefineries target the full use of biomass feedstocks as they have a maximum collection radius of 75-100 km,requesting efficient and selective photocatalysts that significantly influence the outcome of photocatalytic biorefineries.Well-performed photocatalysts can harvest a broad solar spectrum and are active in breaking the chemical bonds of cellulose,decreasing the capital investments of biorefineries.Besides,photocatalysts should control the selectivity of cellulose conversion,originating target products to level down separation costs.Charge separation in photocatalysts and interfacial charge transfer between photocatalysts and cellulose affect the activity and selectivity of cellulose refineries to H2 and carbonaceous chemicals.To account for the challenges above,this review summarizes photocatalysts for the refineries of cellulose and downstream platform molecules based on the types of products,with the structure features of different types of photocatalysts discussed in relation to the targets of either improving the activity or product selectivity.In addition,this review also sheds light on the methods for designing and regulating photocatalyst structures to facilitate photocatalytic refineries of cellulose and platform molecules,meanwhile summarizing proposed future research challenges and opportunities for designing efficient photocatalysts.展开更多
Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although inten...Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although intensive efforts have been committed to achieve a hydrogen economy,the expensive noble metal-based catalysts remain under consideration.Therefore,the engineering of self-supported electrocatalysts prepared using a direct growth strategy on three-dimensional(3D)nickel foam(NF)as a conductive substrate has garnered significant interest.This is due to the large active surface area and 3D porous network offered by these electrocatalysts,which can enhance the synergistic eff ect between the catalyst and the substrate,as well as improve electrocatalytic performance.Hydrothermal-assisted growth,microwave heating,electrodeposition,and other physical methods(i.e.,chemical vapor deposition and plasma treatment)have been applied to NF to fabricate competitive electrocatalysts with low overpotential and high stability.In this review,recent advancements in the development of self-supported electrocatalysts on 3D NF are described.Finally,we provide future perspectives of self-supported electrode platforms in electrochemical water splitting.展开更多
Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(te...Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs.展开更多
Electricity-driven water splitting to produce hydrogen is one of the most efficient ways to alleviate energy crisis and environmental pollution problems,in which the anodic oxygen evolution reaction(OER)is the key hal...Electricity-driven water splitting to produce hydrogen is one of the most efficient ways to alleviate energy crisis and environmental pollution problems,in which the anodic oxygen evolution reaction(OER)is the key half-reaction of performance-limiting in water splitting.Given the complicated reaction process and surface reconstruction of the involved catalysts under actual working conditions,unraveling the real active sites,probing multiple reaction intermediates and clarifying catalytic pathways through in-situ characterization techniques and theoretical calculations are essential.In this review,we summarize the recent advancements in understanding the catalytic process,unlocking the water oxidation active phase and elucidating catalytic mechanism of water oxidation by various in-situ characterization techniques.Firstly,we introduce conventionally proposed traditional catalytic mechanisms and novel evolutionary mechanisms of OER,and highlight the significance of optimal catalytic pathways and intrinsic stability.Next,we provide a comprehensive overview of the fundamental working principles,different detection modes,applicable scenarios,and limitations associated with the in-situ characterization techniques.Further,we exemplified the in-situ studies and discussed phase transition detection,visualization of speciation evolution,electronic structure tracking,observation of reaction active intermediates,and monitoring of catalytic products,as well as establishing catalytic structure-activity relationships and catalytic mechanism.Finally,the key challenges and future perspectives for demystifying the water oxidation process are briefly proposed.展开更多
Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay ...Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs.展开更多
The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabri...The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabrication of safe and high‐energy MXene MSCs for integrating microelectronics remains a significant challenge due to the low voltage window in aqueous electrolytes(typically≤0.6 V)and limited areal mass loading of MXene microelectrodes.Here,we tackle these challenges by developing a highconcentration(18mol kg^(−1))“water‐in‐LiBr”(WiB)gel electrolyte for MXene symmetric MSCs(M‐SMSCs),demonstrating a record high voltage window of 1.8 V.Subsequently,additive‐free aqueous MXene ink with excellent rheological behavior is developed for three‐dimensional(3D)printing customizable all‐MXene microelectrodes on various substrates.Leveraging the synergy of a highvoltage WiB gel electrolyte and 3D‐printed microelectrodes,quasi‐solid‐state MSMSCs operating stably at 1.8 V are constructed,and achieve an ultrahigh areal energy density of 1772μWhcm^(−2) and excellent low‐temperature tolerance,with a long‐term operation at−40℃.Finally,by extending the 3D printing protocol,M‐SMSCs are integrated with humidity sensors on a single planar substrate,demonstrating their reliability in miniaturized integrated microsystems.展开更多
Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars wi...Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H_(2),which remains challenging.Here,the photo-catalytic activity for glucose decomposition to HCOOH,CO(C_(1) chemicals),and H_(2) on Cu/TiO_(2)was enhanced by nitrogen doping.Owing to nitrogen doping,atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO_(2).The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit,distinct from undoped Cu/TiO_(2).Therefore,the lifetime of charge carriers is prolonged,resulting in the pro-duction of C_(1) chemicals and H_(2) with productivities 1.7 and 2.1 folds that of Cu/TiO_(2).This work pro-vides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.展开更多
Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owin...Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owing to the quick evolution of the metallic active sites and the complex reaction processes including direct propane aromatization,CO_(2) hydrogenation,reverse water-gas shift reaction,and propane-CO_(2) coupling aromatization.Herein,Ga/ZSM-5 catalysts were constructed to study the dynamic evolution of the metallic active sites and the role of CO_(2) during the propane and CO_(2) coupling reaction.After optimizing the reaction conditions,a notable propane conversion rate of 97.9%and an impressive aromatics selectivity of 80.6%in hydrocarbons can be achieved at the conditions of 550℃and CO_(2)/C_(3)H_(8) of 4.^(13)CO_(2)isotope experiments illustrate that C-atoms of CO_(2) can enter into CO(86.5%)and aromatics(10.8%)during the propane-CO_(2) coupling reaction process.In situ XANES and FTIR spectroscopies at 550℃and H_(2)/C_(3)H_(8) atmosphere reveal that GaO_(x) species can be gradually dispersed into[GaH_(2)]^(+)/[GaH]^(2+)on the Bronsted acid sites of ZSM-5 zeolite during H_(2) and/or C_(3)H_(8) treatment,which are the real active sites for propane-CO_(2) coupling conversion.In situ CO_(2)-FTIR experiments demonstrate that the[GaH_(2)]^(+)/[GaH]^(2+)species can react with CO_(2) and accelerate the propane and CO_(2) coupling process.This work not only presents a cost-effective avenue for CO_(2) utilization,but also contributes to the active site design for improved alkane and CO_(2) activation in coupling reaction system.展开更多
The rapid increase in the power conversion efficiency(PCE)of perovskite solar cells(PSCs)is closely related to the development of deposition techinique for perovskite layer.The high-quality perovskite film enables eff...The rapid increase in the power conversion efficiency(PCE)of perovskite solar cells(PSCs)is closely related to the development of deposition techinique for perovskite layer.The high-quality perovskite film enables efficient charge transportation and less trap states,which are eventually translated into enhanced device performance.Seed-assisted growth(SAG)is a potential technique for depositing highly-crystallized perovskite films with preferential crystal orientation among the numerous approaches related to crystallization modulation.In this review,we summarize the recent advances in the SAG technique for both one-step and two-step processed perovskite films.Additionally,seeding at the buried interface and on the top surface are also introduced.We present different seeds and their corresponding seeding mechanism in detail,such as inorganic nanomaterials,organic ammoniums,alkali metal halides,and perovskite seeds.Finally,challenges and perspectives are proposed to investigate the potential expansion of seeding engineering in high-performance PSCs,particularly large-area devices.展开更多
Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulatio...Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity.展开更多
Electrocatalysis is a process dealing with electrochemical reactions in the interconversion of chemical energy and electrical energy.Precise synthesis of catalytically active nanostructures is one of the key challenge...Electrocatalysis is a process dealing with electrochemical reactions in the interconversion of chemical energy and electrical energy.Precise synthesis of catalytically active nanostructures is one of the key challenges that hinder the practical application of many important energy‐related electrocatalytic reactions.Compared with conventional wet‐chemical,solid‐state and vapor deposition synthesis,electrochemical synthesis is a simple,fast,cost‐effective and precisely controllable method for the preparation of highly efficient catalytic materials.In this review,we summarize recent progress in the electrochemical synthesis of catalytic materials such as single atoms,spherical and shaped nanoparticles,nanosheets,nanowires,core‐shell nanostructures,layered nanomaterials,dendritic nanostructures,hierarchically porous nanostructures as well as composite nanostructures.Fundamental aspects of electrochemical synthesis and several main electrochemical synthesis methods are discussed.Structure‐performance correlations between electrochemically synthesized catalysts and their unique electrocatalytic properties are exemplified using selected examples.We offer the reader with a basic guide to the synthesis of highly efficient catalysts using electrochemical methods,and we propose some research challenges and future opportunities in this field.展开更多
Sodium-ion capacitors(SICs)have attracted appreciable attention in virtue of the higher energy and power densities compared with their rivals,supercapacitors and sodium-ion batteries.Due to the lack of sodium resource...Sodium-ion capacitors(SICs)have attracted appreciable attention in virtue of the higher energy and power densities compared with their rivals,supercapacitors and sodium-ion batteries.Due to the lack of sodium resources in cathode,presodiation is critical for SICs to further augment performances.However,current presodiation strategy utilizes metallic sodium as the presodiation material.In this strategy,assembling/disassembling of half-cells is required,which is dangerous and in creases the time and cost of SIC leading to the restriction of their industrialization and commercialization.Herein we present a safe,low-cost and high-efficiency presodiation strategy by first employing Na_(2)C_(2)O_(4) as the sacrificial salt applied in SICs.Na_(2)C_(2)O_(4) is environmentally friendly and possesses considerably low expenditure.No additional residues remain after sodium extraction ascribed to its"zero dead mass"property.When paired with commercial activated carb on as the cathode and commercial hard carbon as the ano de,the constructed pouch-type SICs exhibit high energy and power densities of 91.7 Wh/kg and 13.1 kW/kg,respectively.This work shows a prospect of realizing the safe and low-cost manufacturing for high-performance SICs commercially.展开更多
Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of lo...Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of low energy&power density and short cycling lifespan owing to the heavy mass and large radius of Na^(+).Vanadium-based polyanionic compounds have advantageous characteristic of high operating voltage,high ionic conductivity and robust structural framework,which is conducive to their high energy&power density and long lifespan for SIBs.In this review,we will overview the latest V-based polyanionic compounds,along with the respective characteristic from the intrinsic crystal structure to performance presentation and improvement for SIBs.One of the most important aspect is to discover the essential problems existed in the present V-based polyanionic compounds for high-energy&power applications,and point out most suitable solutions from the crystal structure modulation,interface tailoring and electrode configuration design.Moreover,some scientific issues of V-based polyanionic compounds shall be also proposed and related future direction shall be provided.We believe that this review can serve as a motivation for further development of novel V-based polyanionic compounds and drive them toward high energy&power applications in the near future.展开更多
Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost...Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost alkaline all-iron flow battery by coupling ferri/ferro-cyanide redox couple with ferric/ferrous-gluconate complexes redox couple.The designed all-iron flow battery demonstrates a coulombic efficiency of above 99%and an energy efficiency of~83%at a current density of80 m A cm^(-2),which can continuously run for more than 950 cycles.Most importantly,the battery demonstrates a coulombic efficiency of more than 99.0%and an energy efficiency of~83%for a long duration(~12,16 and 20 h per cycle)charge/discharge process.Benefiting from the low cost of iron electrolytes,the overall cost of the all-iron flow battery system can be reached as low as$76.11 per k Wh based on a10 h system with a power of 9.9 k W.This work provides a new option for next-generation cost-effective flow batteries for long duration large scale energy storage.展开更多
For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-acti...For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-active materials have been considered as one of the promising technologies for achieving lowcost and high-performance. Herein, we present a critical overview of the progress on the OFBs, including the design principles of key components(redox-active molecules, membranes, and electrodes) and the latest achievement in both aqueous and nonaqueous systems. Finally, future directions in explorations of the high-performance OFB for electrochemical energy storage are also highlighted.展开更多
Two-dimensional(2D)boron nitride(BN),the so-called“white graphene,”has demonstrated a great potential in various fields,particularly in electronics and energy,by utilizing its wide bandgap(~5.5 eV),superior thermal ...Two-dimensional(2D)boron nitride(BN),the so-called“white graphene,”has demonstrated a great potential in various fields,particularly in electronics and energy,by utilizing its wide bandgap(~5.5 eV),superior thermal stability,high thermal conductance,chemical inertness,and outstanding dielectric properties.However,to further optimize the performances from the view of structure-property relationship,the determinative factors such as crystallite sizes,layer thickness,dispersibility,and surface functionalities should be precisely controlled and adjusted.Therefore,in this review,the synthesis and functionalization methods including“top-down”and“bottom-up”strategies,and non-covalent and covalent modifications for 2D BN are systematically classified and discussed at first,thus catering for the requirements of versatile applications.Then,the progresses of 2D BN applied in the fields of microelectronics such as fieldeffect transistors and dielectric capacitors,energy domains such as thermal energy management and conversion,and batteries and supercapacitors are summarized to highlight the importance of 2D BN.Notably,these contents not only contain the state-of-the-art 2D BN composites,but also bring the current novel design of 2D BN-based microelectronic units.Finally,the challenges and perspectives are proposed to better broaden the scope of this material.Therefore,this review will pave an all-around way for understanding,utilizing,and applying 2D BN in future electronics and energy applications.展开更多
Rational design and precise regulation over the morphology, structure, and pore size of functional conducting mesoporous polymers with enriched active sites and shorten electron–ion transport pathway are extremely im...Rational design and precise regulation over the morphology, structure, and pore size of functional conducting mesoporous polymers with enriched active sites and shorten electron–ion transport pathway are extremely important for developing high-performance micro-supercapacitors (MSCs), but still remain a great challenge. Herein, a general dual-colloid interface co-assembly strategy is proposed to fabricate hollow mesoporous polypyrrole nano-bowls (mPPy-nbs) for high-energy-density solid-state planar MSCs. By simply adjusting the size of block copolymer micelles, the diameter of polystyrene nanospheres and the amount of pyrrole monomer, mesopore size of the shell, void and shell thickness of mPPy-nbs can be simultaneously controlled. Importantly, this strategy can be further utilized to synthesize other hollow mesoporous polymers, including poly(tris(4-aminophenyl)amine), poly(1,3,5-triaminobenzene) and their copolymers, demonstrative of excellent universality. The structurally optimized mPPy-nb exhibits high specific surface area of 122 m^(2) g^(−1)and large capacitance of 225 F g^(−1) at 1 mV s^(−1). Furthermore, the MSCs assembled by mPPy-nbs deliver impressive volumetric capacitance of 90 F cm^(−3) and energy density of 2.0 mWh cm^(−3), superior to the most reported polymers-based MSCs. Also, the fabricated MSCs present excellent flexibility with almost no capacitance decay under varying bending states, and robust serial/parallel self-integration for boosting voltage and capacitance output. Therefore, this work will inspire the new design of mesoporous conducting polymer materials toward high-performance microscale supercapacitive devices.展开更多
基金The authors are thankful for the financial support from the Beijing Natural Science Foundation(No.3222050)the National Natural Science Foundation of China(Nos.22075304 and 52202324).
文摘High-entropy oxides(HEOs)are gaining prominence in the field of electrochemistry due to their distinctive structural characteristics,which give rise to their advanced stable and modifiable functional properties.This review presents fundamental preparations,incidental characterizations,and typical structures of HEOs.The prospective applications of HEOs in various electrochemical aspects of electrocatalysis and energy conversion-storage are also summarized,including recent developments and the general trend of HEO structure design in the catalysis containing oxygen evolution reaction(OER)and oxygen reduction reaction(ORR),supercapacitors(SC),lithium-ion batteries(LIBs),solid oxide fuel cells(SOFCs),and so forth.Moreover,this review notes some apparent challenges and multiple opportunities for the use of HEOs in the wide field of energy to further guide the development of practical applications.The influence of entropy is significant,and high-entropy oxides are expected to drive the improvement of energy science and technology in the near future.
基金financially supported by the National Natural Science Foundation of China (Grants. 22075279, 22279137, 22125903, 22109040)National Key R&D Program of China (Grant 2022YFA1504100)+2 种基金Dalian Innovation Support Plan for High Level Talents (2019RT09)Dalian National Labo- ratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL202016, DNL202019), DICP (DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002, YLU- DNL Fund 2021009)。
文摘Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.
基金the financial support from the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021007)the National Nature Science Foundation of China(21903082 and 22273100)+2 种基金the Dalian Institute of Chemical Physics(DICP I202036,and I202218)the DNL Cooperation Fund,CAS(DNL202012)Liaoning Provincial Natural Science Foundation of China under grant 2022-MS-020。
文摘Phase change materials(PCMs)have attracted much attention in the field of solar thermal utilization recently,due to their outstanding thermal energy storage performance.However,PCMs usually release their stored latent heat spontaneously as the temperature below the phase transition temperature,rendering thermal energy storage and release uncontrollable,thus hindering their practical application in time and space.Herein,we developed erythritol/sodium carboxymethylcellulose/tetrasodium ethylenediaminetetraacetate(ERY/CMC/EDTA-4Na)composite PCMs with novel spatiotemporal thermal energy storage properties,defined as spatiotemporal PCMs(STPCMs),which exhibit the capacity of thermal energy long-term storage and controllable release.Our results show that the composite PCMs are unable to lose latent heat due to spontaneous crystallization during cooling,but can controllably release thermal energy through cold crystallization during reheating.The cold-crystallization temperature and enthalpy of composite PCMs can be adjusted by proportional addition of EDTA-4Na to the composite.When the mass fractions of CMC and EDTA-4Na are both 10%,the composite PCMs can exhibit the optical coldcrystallization temperature of 51.7℃ and enthalpy of 178.1 J/g.The supercooled composite PCMs without latent heat release can be maintained at room temperature(10-25℃)for up to more than two months,and subsequently the stored latent heat can be controllably released by means of thermal triggering or heterogeneous nucleation.Our findings provide novel insights into the design and construction of new PCMs with spatiotemporal performance of thermal energy long-term storage and controllable release,and consequently open a new door for the development of advanced solar thermal utilization techniques on the basis of STPCMs.
基金supported by the National Natural Science Foundation of China(22172157,22025206)the Dalian Innovation Support Plan for High Level Talents(2022RG13),DICP(DICP I202116)+1 种基金the Youth Innovation Promotion Association(YIPA)of the Chinese Academy of Sciences(2023192)the Fundamental Research Funds for the Central Universities(20720220008)。
文摘Lignocellulosic biomass is the largest renewable hydrocarbon resource on earth.Converting cellulose,one of the major components of lignocellulose,powered by solar energy is a promising way of providing lowcarbon-footprint energy chemicals such as H_(2),HCOOH,CO,and transportation fuels.State-of-the-art biorefineries target the full use of biomass feedstocks as they have a maximum collection radius of 75-100 km,requesting efficient and selective photocatalysts that significantly influence the outcome of photocatalytic biorefineries.Well-performed photocatalysts can harvest a broad solar spectrum and are active in breaking the chemical bonds of cellulose,decreasing the capital investments of biorefineries.Besides,photocatalysts should control the selectivity of cellulose conversion,originating target products to level down separation costs.Charge separation in photocatalysts and interfacial charge transfer between photocatalysts and cellulose affect the activity and selectivity of cellulose refineries to H2 and carbonaceous chemicals.To account for the challenges above,this review summarizes photocatalysts for the refineries of cellulose and downstream platform molecules based on the types of products,with the structure features of different types of photocatalysts discussed in relation to the targets of either improving the activity or product selectivity.In addition,this review also sheds light on the methods for designing and regulating photocatalyst structures to facilitate photocatalytic refineries of cellulose and platform molecules,meanwhile summarizing proposed future research challenges and opportunities for designing efficient photocatalysts.
基金supported by The Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (No. 2023VCB0014)The National Natural Science Foundation of China (No. 52203284)Shenzhen Science and Technology Program (Nos. GJHZ20220913143801003 and RCBS20221008093057026)
文摘Economical water electrolysis requires highly active non-noble electrocatalysts to overcome the sluggish kinetics of the two half-cell reactions,oxygen evolution reaction,and hydrogen evolution reaction.Although intensive efforts have been committed to achieve a hydrogen economy,the expensive noble metal-based catalysts remain under consideration.Therefore,the engineering of self-supported electrocatalysts prepared using a direct growth strategy on three-dimensional(3D)nickel foam(NF)as a conductive substrate has garnered significant interest.This is due to the large active surface area and 3D porous network offered by these electrocatalysts,which can enhance the synergistic eff ect between the catalyst and the substrate,as well as improve electrocatalytic performance.Hydrothermal-assisted growth,microwave heating,electrodeposition,and other physical methods(i.e.,chemical vapor deposition and plasma treatment)have been applied to NF to fabricate competitive electrocatalysts with low overpotential and high stability.In this review,recent advancements in the development of self-supported electrocatalysts on 3D NF are described.Finally,we provide future perspectives of self-supported electrode platforms in electrochemical water splitting.
基金supported by The National Key Research and Development Program of China(2021YFB4001204)National Natural Science Foundation of China(22379143)。
文摘Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs.
基金support from National Natural Science Foundation of China(Grant Nos.22125903,22209174)the National Key R&D Program of China(Grants 2022YFA1504100)+2 种基金Dalian Innovation Support Plan for High Level Talents(2019RT09)Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL202016,DNL202019)DICP(DICP I2020032).
文摘Electricity-driven water splitting to produce hydrogen is one of the most efficient ways to alleviate energy crisis and environmental pollution problems,in which the anodic oxygen evolution reaction(OER)is the key half-reaction of performance-limiting in water splitting.Given the complicated reaction process and surface reconstruction of the involved catalysts under actual working conditions,unraveling the real active sites,probing multiple reaction intermediates and clarifying catalytic pathways through in-situ characterization techniques and theoretical calculations are essential.In this review,we summarize the recent advancements in understanding the catalytic process,unlocking the water oxidation active phase and elucidating catalytic mechanism of water oxidation by various in-situ characterization techniques.Firstly,we introduce conventionally proposed traditional catalytic mechanisms and novel evolutionary mechanisms of OER,and highlight the significance of optimal catalytic pathways and intrinsic stability.Next,we provide a comprehensive overview of the fundamental working principles,different detection modes,applicable scenarios,and limitations associated with the in-situ characterization techniques.Further,we exemplified the in-situ studies and discussed phase transition detection,visualization of speciation evolution,electronic structure tracking,observation of reaction active intermediates,and monitoring of catalytic products,as well as establishing catalytic structure-activity relationships and catalytic mechanism.Finally,the key challenges and future perspectives for demystifying the water oxidation process are briefly proposed.
基金supported by the CAS Project of Young Scientists in Basic Research(YSBR-058)the National Natural Science Foundation of China(22279135)+2 种基金the Outstanding Youth Foundation of Liaoning Province(2023JH3/10200019)the Dalian Science and Technology Innovation Fund(2023JJ11CG004)the Energy Revolution S&T Program of Yulin Innovation Institute of Clean Energy(YIICE E411010316)。
文摘Anode-free solid-state lithium metal batteries(AF-SSLBs)have the potential to deliver higher energy density and improved safety beyond lithium-metal batteries.However,the unclear mechanism for the fast capacity decay in AF-SSLBs,either determined by dead Li or solid electrolyte interface(SEI),limits the proposal of effective strategies to prolong cycling life.To clarify the underlying mechanism,herein,the evolution of SEI and dead Li is quantitatively analyzed by a solid-state nuclear magnetic resonance(ss-NMR)technology in a typical LiPF6-based polymer electrolyte.The results show that the initial capacity loss is attributed to the formation of SEI,while the dead Li dominates the following capacity loss and the growth rate is 0.141 mA h cm^(−2)cycle−1.To reduce the active Li loss,the combination of inorganic-rich SEI and self-healing electrostatic shield effect is proposed to improve the reversibility of Li deposition/dissolution behavior,which reduces the capacity loss rate for the initial SEI and following dead Li generation by 2.3 and 20.1 folds,respectively.As a result,the initial Coulombic efficiency(ICE)and stable CE increase by 15.1%and 15.3%in Li-Cu cells,which guides the rational design of high-performance AF-SSLBs.
基金National Natural Science Foundation of China,Grant/Award Numbers:22005297,22125903,51872283,22209175,22209176National Key Research and Development Program of China,Grant/Award Number:2022YFA1504100+8 种基金Support Program for Excellent Young Talents in Universities of Anhui Province,Grant/Award Number:2022AH030134Anhui Province Higher Education Innovation Team:Key Technologies and Equipment Innovation Team for Clean Energy,Grant/Award Number:2023AH010055Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDB36030200Dalian Innovation Support Plan for High Level Talents,Grant/Award Number:2019RT09Dalian National Laboratory for Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS,Grant/Award Numbers:DNL202016,DNL202019,DNL202003DICP,Grant/Award Number:DICP I2020032Doctor Research Startup Foundation of Suzhou University,Grant/Award Number:2023BSK015China Postdoctoral Science Foundation,Grant/Award Numbers:2020M680995,2021M693127International Postdoctoral Exchange Fellowship Program,Grant/Award Number:YJ20210311。
文摘The rapid advancement in the miniaturization,integration,and intelligence of electronic devices has escalated the demand for customizable microsupercapacitors(MSCs)with high energy density.However,efficient microfabrication of safe and high‐energy MXene MSCs for integrating microelectronics remains a significant challenge due to the low voltage window in aqueous electrolytes(typically≤0.6 V)and limited areal mass loading of MXene microelectrodes.Here,we tackle these challenges by developing a highconcentration(18mol kg^(−1))“water‐in‐LiBr”(WiB)gel electrolyte for MXene symmetric MSCs(M‐SMSCs),demonstrating a record high voltage window of 1.8 V.Subsequently,additive‐free aqueous MXene ink with excellent rheological behavior is developed for three‐dimensional(3D)printing customizable all‐MXene microelectrodes on various substrates.Leveraging the synergy of a highvoltage WiB gel electrolyte and 3D‐printed microelectrodes,quasi‐solid‐state MSMSCs operating stably at 1.8 V are constructed,and achieve an ultrahigh areal energy density of 1772μWhcm^(−2) and excellent low‐temperature tolerance,with a long‐term operation at−40℃.Finally,by extending the 3D printing protocol,M‐SMSCs are integrated with humidity sensors on a single planar substrate,demonstrating their reliability in miniaturized integrated microsystems.
文摘Photocatalytic decomposition of sugars is a promising way of providing H_(2),CO,and HCOOH as sus-tainable energy vectors.However,the production of C_(1) chemicals requires the cleavage of robust C−C bonds in sugars with concurrent production of H_(2),which remains challenging.Here,the photo-catalytic activity for glucose decomposition to HCOOH,CO(C_(1) chemicals),and H_(2) on Cu/TiO_(2)was enhanced by nitrogen doping.Owing to nitrogen doping,atomically dispersed and stable Cu sites resistant to light irradiation are formed on Cu/TiO_(2).The electronic interaction between Cu and nitrogen ions originates valence band structure and defect levels composed of N 2p orbit,distinct from undoped Cu/TiO_(2).Therefore,the lifetime of charge carriers is prolonged,resulting in the pro-duction of C_(1) chemicals and H_(2) with productivities 1.7 and 2.1 folds that of Cu/TiO_(2).This work pro-vides a strategy to design coordinatively stable Cu ions for photocatalytic biomass conversion.
基金supported by the National Key Research and Development Program of China (No.2022YFE0116000)the National Natural Science Foundation of China (No.22288101,21991092,21991090,22202193,and 22172166)+1 种基金the Youth Innovation Promotion Association CAS (2021182)the Innovation Research Foundation of Dalian Institute of Chemical Physics,Chinese Academy of Sciences (DICP I202429 and I202217)。
文摘Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owing to the quick evolution of the metallic active sites and the complex reaction processes including direct propane aromatization,CO_(2) hydrogenation,reverse water-gas shift reaction,and propane-CO_(2) coupling aromatization.Herein,Ga/ZSM-5 catalysts were constructed to study the dynamic evolution of the metallic active sites and the role of CO_(2) during the propane and CO_(2) coupling reaction.After optimizing the reaction conditions,a notable propane conversion rate of 97.9%and an impressive aromatics selectivity of 80.6%in hydrocarbons can be achieved at the conditions of 550℃and CO_(2)/C_(3)H_(8) of 4.^(13)CO_(2)isotope experiments illustrate that C-atoms of CO_(2) can enter into CO(86.5%)and aromatics(10.8%)during the propane-CO_(2) coupling reaction process.In situ XANES and FTIR spectroscopies at 550℃and H_(2)/C_(3)H_(8) atmosphere reveal that GaO_(x) species can be gradually dispersed into[GaH_(2)]^(+)/[GaH]^(2+)on the Bronsted acid sites of ZSM-5 zeolite during H_(2) and/or C_(3)H_(8) treatment,which are the real active sites for propane-CO_(2) coupling conversion.In situ CO_(2)-FTIR experiments demonstrate that the[GaH_(2)]^(+)/[GaH]^(2+)species can react with CO_(2) and accelerate the propane and CO_(2) coupling process.This work not only presents a cost-effective avenue for CO_(2) utilization,but also contributes to the active site design for improved alkane and CO_(2) activation in coupling reaction system.
基金support from the 111 Project(B21005)the National Natural Science Foundation of China(Grant No.62174103)the National University Research Fund(GK202309020).
文摘The rapid increase in the power conversion efficiency(PCE)of perovskite solar cells(PSCs)is closely related to the development of deposition techinique for perovskite layer.The high-quality perovskite film enables efficient charge transportation and less trap states,which are eventually translated into enhanced device performance.Seed-assisted growth(SAG)is a potential technique for depositing highly-crystallized perovskite films with preferential crystal orientation among the numerous approaches related to crystallization modulation.In this review,we summarize the recent advances in the SAG technique for both one-step and two-step processed perovskite films.Additionally,seeding at the buried interface and on the top surface are also introduced.We present different seeds and their corresponding seeding mechanism in detail,such as inorganic nanomaterials,organic ammoniums,alkali metal halides,and perovskite seeds.Finally,challenges and perspectives are proposed to investigate the potential expansion of seeding engineering in high-performance PSCs,particularly large-area devices.
基金supported by the National Natural Science Foundation of China (22288101,21991090,21991091,22078316,22272171 and 22109167)the Sino-French International Research Network (Zeolites)+2 种基金the BL01B1 beamline of SPring-8 and the 1W1B station of Beijing Synchrotron Radiation Facility (BSRF)for the support of XAS measurementsthe Division of Energy Research Resources of Dalian Institute of Chemical Physics for the support of iDPC-STEM measurementsthe support of the Alexander von Humboldt Foundation (CHN 1220532 HFST-P)。
文摘Zeolite-encapsulated metal nanoclusters are at the heart of bifunctional catalysts,which hold great potential for petrochemical conversion and the emerging sustainable biorefineries.Nevertheless,efficient encapsulation of metal nanoclusters into a high-silica zeolite Y in particular with good structural integrity still remains a significant challenge.Herein,we have constructed Ru nanoclusters(~1 nm)encapsulated inside a high-silica zeolite Y(SY)with a SiO_(2)/Al_(2)O_(3) ratio(SAR)of 10 via a cooperative strategy for direct zeolite synthesis and a consecutive impregnation for metal encapsulation.Compared with the benchmark Ru/H-USY and other analogues,the as-prepared Ru/H-SY markedly boosts the yields of pentanoic biofuels and stability in the direct hydrodeoxygenation of biomass-derived levulinate even at a mild temperature of 180℃,which are attributed to the notable stabilization of transition states by the enhanced acid accessibility and properly sized constraints of zeolite cavities owing to the good structural integrity.
文摘Electrocatalysis is a process dealing with electrochemical reactions in the interconversion of chemical energy and electrical energy.Precise synthesis of catalytically active nanostructures is one of the key challenges that hinder the practical application of many important energy‐related electrocatalytic reactions.Compared with conventional wet‐chemical,solid‐state and vapor deposition synthesis,electrochemical synthesis is a simple,fast,cost‐effective and precisely controllable method for the preparation of highly efficient catalytic materials.In this review,we summarize recent progress in the electrochemical synthesis of catalytic materials such as single atoms,spherical and shaped nanoparticles,nanosheets,nanowires,core‐shell nanostructures,layered nanomaterials,dendritic nanostructures,hierarchically porous nanostructures as well as composite nanostructures.Fundamental aspects of electrochemical synthesis and several main electrochemical synthesis methods are discussed.Structure‐performance correlations between electrochemically synthesized catalysts and their unique electrocatalytic properties are exemplified using selected examples.We offer the reader with a basic guide to the synthesis of highly efficient catalysts using electrochemical methods,and we propose some research challenges and future opportunities in this field.
基金supported by the National Science Foundation of China(No.51907193,51822706 and 51777200)the Beijing Natural Science foundation(JQ19012)+2 种基金the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-JSC047)the Youth Innovation Promotion Association,CAS(No.2020145)the Dalian National Laboratory for Clean Energy Cooperation Fund,the CAS(Nos.DNL201912,DNL201915).
文摘Sodium-ion capacitors(SICs)have attracted appreciable attention in virtue of the higher energy and power densities compared with their rivals,supercapacitors and sodium-ion batteries.Due to the lack of sodium resources in cathode,presodiation is critical for SICs to further augment performances.However,current presodiation strategy utilizes metallic sodium as the presodiation material.In this strategy,assembling/disassembling of half-cells is required,which is dangerous and in creases the time and cost of SIC leading to the restriction of their industrialization and commercialization.Herein we present a safe,low-cost and high-efficiency presodiation strategy by first employing Na_(2)C_(2)O_(4) as the sacrificial salt applied in SICs.Na_(2)C_(2)O_(4) is environmentally friendly and possesses considerably low expenditure.No additional residues remain after sodium extraction ascribed to its"zero dead mass"property.When paired with commercial activated carb on as the cathode and commercial hard carbon as the ano de,the constructed pouch-type SICs exhibit high energy and power densities of 91.7 Wh/kg and 13.1 kW/kg,respectively.This work shows a prospect of realizing the safe and low-cost manufacturing for high-performance SICs commercially.
基金financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21070500)the DNL Cooperation Fund,CAS(DNL201914)。
文摘Sodium ion batteries(SIBs)have been regarded as one of the alternatives to lithium ion batteries owing to their wide availability and significantly low cost of sodium sources.However,they face serious challenges of low energy&power density and short cycling lifespan owing to the heavy mass and large radius of Na^(+).Vanadium-based polyanionic compounds have advantageous characteristic of high operating voltage,high ionic conductivity and robust structural framework,which is conducive to their high energy&power density and long lifespan for SIBs.In this review,we will overview the latest V-based polyanionic compounds,along with the respective characteristic from the intrinsic crystal structure to performance presentation and improvement for SIBs.One of the most important aspect is to discover the essential problems existed in the present V-based polyanionic compounds for high-energy&power applications,and point out most suitable solutions from the crystal structure modulation,interface tailoring and electrode configuration design.Moreover,some scientific issues of V-based polyanionic compounds shall be also proposed and related future direction shall be provided.We believe that this review can serve as a motivation for further development of novel V-based polyanionic compounds and drive them toward high energy&power applications in the near future.
基金the financial support from National Natural Science Foundation of China(22078313,21908214 and 21925804)the Dalian High Level Talent Innovation support program(2020RD05)+2 种基金the Dalian Young Star of Science and Technology(2021RQ122)the Free exploring basic research project of Liaoning(2022JH6/100100005)the Youth Innovation Promotion Association CAS(2019182)。
文摘Long duration energy storage(LDES)technologies are vital for wide utilization of renewable energy sources and increasing the penetration of these technologies within energy infrastructures.Herein,we propose a low-cost alkaline all-iron flow battery by coupling ferri/ferro-cyanide redox couple with ferric/ferrous-gluconate complexes redox couple.The designed all-iron flow battery demonstrates a coulombic efficiency of above 99%and an energy efficiency of~83%at a current density of80 m A cm^(-2),which can continuously run for more than 950 cycles.Most importantly,the battery demonstrates a coulombic efficiency of more than 99.0%and an energy efficiency of~83%for a long duration(~12,16 and 20 h per cycle)charge/discharge process.Benefiting from the low cost of iron electrolytes,the overall cost of the all-iron flow battery system can be reached as low as$76.11 per k Wh based on a10 h system with a power of 9.9 k W.This work provides a new option for next-generation cost-effective flow batteries for long duration large scale energy storage.
基金supported by the China Natural Science Foundation(U1808209)the CAS-DOE program,CAS(QYZDB-SSWJSC032)+1 种基金the Key R&D project of Dalian(2018YF17GX020)the DICP funding(ZZBS201707)。
文摘For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-active materials have been considered as one of the promising technologies for achieving lowcost and high-performance. Herein, we present a critical overview of the progress on the OFBs, including the design principles of key components(redox-active molecules, membranes, and electrodes) and the latest achievement in both aqueous and nonaqueous systems. Finally, future directions in explorations of the high-performance OFB for electrochemical energy storage are also highlighted.
基金financialy supported by the National Key R@D Program of China (Grants 2016YBF0100100 and 2016YFA0200200)National Natural Science Foundation of China (Grants 51872283, and 21805273)+5 种基金Liaoning Bai Qian Wan Talents Program, Liao Ning Revitalization Talents Program (Grant XLYC1807153)Natural Science Foundation of Liaoning Province, Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (Grant 20180510038)DICP (DICP ZZBS201708, DICP ZZBS201802, and DICP I202032)Dalian National Laboratory For Clean Energy(DNL), CAS,DNL Cooperation Fund,CAS (DNL180310, DNL180308, DNL201912, and DNL201915)the Australian Research Council Discovery Program (DP190103290)Australian Research Council Discovery Early Career Researcher Award scheme (DE150101617)
文摘Two-dimensional(2D)boron nitride(BN),the so-called“white graphene,”has demonstrated a great potential in various fields,particularly in electronics and energy,by utilizing its wide bandgap(~5.5 eV),superior thermal stability,high thermal conductance,chemical inertness,and outstanding dielectric properties.However,to further optimize the performances from the view of structure-property relationship,the determinative factors such as crystallite sizes,layer thickness,dispersibility,and surface functionalities should be precisely controlled and adjusted.Therefore,in this review,the synthesis and functionalization methods including“top-down”and“bottom-up”strategies,and non-covalent and covalent modifications for 2D BN are systematically classified and discussed at first,thus catering for the requirements of versatile applications.Then,the progresses of 2D BN applied in the fields of microelectronics such as fieldeffect transistors and dielectric capacitors,energy domains such as thermal energy management and conversion,and batteries and supercapacitors are summarized to highlight the importance of 2D BN.Notably,these contents not only contain the state-of-the-art 2D BN composites,but also bring the current novel design of 2D BN-based microelectronic units.Finally,the challenges and perspectives are proposed to better broaden the scope of this material.Therefore,this review will pave an all-around way for understanding,utilizing,and applying 2D BN in future electronics and energy applications.
基金This work was financially supported by the Natural Science Foundation of China(Grant No.51773062,61831021,51872283,21805273,22075279,22005297,22005298)the China Postdoctoral Science Foundation(Project No.2019M661421)+9 种基金the National Key R@D Program of China(Grants 2016YBF0100100,2016YFA0200200)the Liaoning BaiQianWan Talents Program,Liaoning Revitalization Talents Program(Grant XLYC1807153)the Natural Science Foundation of Liaoning Province,Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Grant 20180510038)the Dalian Innovation Support Plan for High Level Talents(2019RT09)DICP(DICP ZZBS201708,DICP ZZBS201802,and DICP 1202032)the DICP&QIBEBT(Grant DICP&QjBEBT UN201702)the Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL180310,DNL180308,DNL201912,and DNL201915)We thank Yucen Li and Prof.Ming Hu(East China Normal University,China)for the kind help in nitrogen absorption-desorption isotherms measurementalso thank the Material structure analysis center and Multifunctional Platform for Innovation of East China Normal University(003,004,006)the Center for Advanced Electronic Materials and Devices(AEMD)of Shanghai Jiao Tong University.
文摘Rational design and precise regulation over the morphology, structure, and pore size of functional conducting mesoporous polymers with enriched active sites and shorten electron–ion transport pathway are extremely important for developing high-performance micro-supercapacitors (MSCs), but still remain a great challenge. Herein, a general dual-colloid interface co-assembly strategy is proposed to fabricate hollow mesoporous polypyrrole nano-bowls (mPPy-nbs) for high-energy-density solid-state planar MSCs. By simply adjusting the size of block copolymer micelles, the diameter of polystyrene nanospheres and the amount of pyrrole monomer, mesopore size of the shell, void and shell thickness of mPPy-nbs can be simultaneously controlled. Importantly, this strategy can be further utilized to synthesize other hollow mesoporous polymers, including poly(tris(4-aminophenyl)amine), poly(1,3,5-triaminobenzene) and their copolymers, demonstrative of excellent universality. The structurally optimized mPPy-nb exhibits high specific surface area of 122 m^(2) g^(−1)and large capacitance of 225 F g^(−1) at 1 mV s^(−1). Furthermore, the MSCs assembled by mPPy-nbs deliver impressive volumetric capacitance of 90 F cm^(−3) and energy density of 2.0 mWh cm^(−3), superior to the most reported polymers-based MSCs. Also, the fabricated MSCs present excellent flexibility with almost no capacitance decay under varying bending states, and robust serial/parallel self-integration for boosting voltage and capacitance output. Therefore, this work will inspire the new design of mesoporous conducting polymer materials toward high-performance microscale supercapacitive devices.