The consumption of dye-sensitized solar cells (DSSCs) used to produce hydrogen, compared with the traditional water-splitting energy, is much less. First of all it is because of DSSCs’ low cost, easy fabrication proc...The consumption of dye-sensitized solar cells (DSSCs) used to produce hydrogen, compared with the traditional water-splitting energy, is much less. First of all it is because of DSSCs’ low cost, easy fabrication process, high conversion efficiency and good stability;secondly it also solves the problem of serious corrosion of the electrode, for the entire solar system is in the air. We use three tandem dye-sensitized photovoltaic cells as a source of power;the open circuit voltage of photoelectric unit shows the feasibility of using dye-sensitized photovoltaic cell decomposition of water to produce hydrogen.展开更多
To get a deeper understanding on the synergistic enhancement effect of low frequency artificial seismic wave on foam stability,a micro-kinetic model of enhanced foam stability under low frequency artificial seismic wa...To get a deeper understanding on the synergistic enhancement effect of low frequency artificial seismic wave on foam stability,a micro-kinetic model of enhanced foam stability under low frequency artificial seismic wave is established based on a vertical liquid film drainage model and elastic wave theory.The model is solved by non-dimensional transformation of the high order partial differential equations and a compound solution of implicit and explicit differences and is verified to be accurate.The foam film thickness,surfactant concentration distribution and drainage velocity under the action of low frequency artificial seismic wave are quantitatively analyzed.The research shows that low-frequency vibration can reduce the difference between the maximum and minimum concentrations of surfactant in the foam liquid film at the later stage of drainage,enhance the effect of Marangoni effect,and improve the stability of the foam liquid film.When the vibration frequency is close to the natural frequency of the foam liquid film,the vibration effect is the best,and the best vibration frequency is about 50 Hz.The higher the vibration acceleration,the faster the recovery rate of surfactant concentration in the foam liquid film is.The higher the vibration acceleration,the stronger the ability of Marangoni effect to delay the drainage of foam liquid film and the better the foam stability is.It is not the higher the vibration acceleration,the better.The best vibration acceleration is about 0.5 times of gravity acceleration.Reasonable vibration parameters would greatly enhance the effect of Marangoni effect.The smaller the initial concentration of surfactant,the better the vibration works in enhancing Marangoni effect.展开更多
文摘The consumption of dye-sensitized solar cells (DSSCs) used to produce hydrogen, compared with the traditional water-splitting energy, is much less. First of all it is because of DSSCs’ low cost, easy fabrication process, high conversion efficiency and good stability;secondly it also solves the problem of serious corrosion of the electrode, for the entire solar system is in the air. We use three tandem dye-sensitized photovoltaic cells as a source of power;the open circuit voltage of photoelectric unit shows the feasibility of using dye-sensitized photovoltaic cell decomposition of water to produce hydrogen.
基金Supported by National Natural Science Foundation of China(51904320,51874339)The Special Fundamental Research Fund for the Central Universities(18CX02095A)。
文摘To get a deeper understanding on the synergistic enhancement effect of low frequency artificial seismic wave on foam stability,a micro-kinetic model of enhanced foam stability under low frequency artificial seismic wave is established based on a vertical liquid film drainage model and elastic wave theory.The model is solved by non-dimensional transformation of the high order partial differential equations and a compound solution of implicit and explicit differences and is verified to be accurate.The foam film thickness,surfactant concentration distribution and drainage velocity under the action of low frequency artificial seismic wave are quantitatively analyzed.The research shows that low-frequency vibration can reduce the difference between the maximum and minimum concentrations of surfactant in the foam liquid film at the later stage of drainage,enhance the effect of Marangoni effect,and improve the stability of the foam liquid film.When the vibration frequency is close to the natural frequency of the foam liquid film,the vibration effect is the best,and the best vibration frequency is about 50 Hz.The higher the vibration acceleration,the faster the recovery rate of surfactant concentration in the foam liquid film is.The higher the vibration acceleration,the stronger the ability of Marangoni effect to delay the drainage of foam liquid film and the better the foam stability is.It is not the higher the vibration acceleration,the better.The best vibration acceleration is about 0.5 times of gravity acceleration.Reasonable vibration parameters would greatly enhance the effect of Marangoni effect.The smaller the initial concentration of surfactant,the better the vibration works in enhancing Marangoni effect.