Dynamic force of BS buffer unit in the enwinding hoisting system is calculated, and the buffer unit is in- stalled and tested. The result shows that this buffer unit is accurate in its regulated braking force and conv...Dynamic force of BS buffer unit in the enwinding hoisting system is calculated, and the buffer unit is in- stalled and tested. The result shows that this buffer unit is accurate in its regulated braking force and convenient in ad- justment and restoration. It can be repeatedly used as a bumper for both over-winding and over-falling without replacing any parts, providing an applicable device for safety operation in coal mining.展开更多
The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the s...The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the systemic design and working face out-play, tried to perfect the caving mining technology of hard-thick coal seams further.展开更多
To enhance gas drainage in the soft and hard interbedded(SHI)coal seam,it’s necessary to unload the insitu stress and improve its gas migration performance.In this research,a directional hydraulic flushing(DHF)techno...To enhance gas drainage in the soft and hard interbedded(SHI)coal seam,it’s necessary to unload the insitu stress and improve its gas migration performance.In this research,a directional hydraulic flushing(DHF)technology was carried out.The stress-unloading and gas migration improvement mechanism was analyzed through numerical simulation,and systematic engineering tests were conducted to verify the gas drainage effect.The results show that the improvement of gas migration performance in the SHI coal seam is caused by a combined effect of seepage-improving and diffusion-improving.After DHF,stress-unloading and plastic failure could be achieved both in the soft coal(SC)sublayer and in the hard coal(HC)sublayer.However,the gas diffusion capacity improves significantly in the SC sublayer,while the gas seepage capacity improves notably in the HC sublayer.Meanwhile,the stress-unloading and gas migration improvement effect improves with the flushing radius and the thickness of the SC sublayer.Besides,after adopting the DHF technology,the gas drainage effect improved markedly.The borehole number dropped by 49%,the gas drainage ratio increased from 26.0%to 48.2%,and the average coal roadway excavation speed increased from 2.4 to 5.6 m/d.展开更多
文摘Dynamic force of BS buffer unit in the enwinding hoisting system is calculated, and the buffer unit is in- stalled and tested. The result shows that this buffer unit is accurate in its regulated braking force and convenient in ad- justment and restoration. It can be repeatedly used as a bumper for both over-winding and over-falling without replacing any parts, providing an applicable device for safety operation in coal mining.
基金Supported by the Production Safety and Supervision of Management Bureau of China(04-116) the Returned Overseas Scholar Fund of Educational Department of China(2003406)+1 种基金 the Soft Science Planning Program of Shandong Province(A200423-6) the National Soft Science Planed Program (2004DGQ3D090)
文摘The article introduced the key technology, mining process, and back-and-forth mining method for the caving working face of hard-thick coal seams in Datong mine, and researched this innovations process, optimized the systemic design and working face out-play, tried to perfect the caving mining technology of hard-thick coal seams further.
基金the financial support from the National Natural Science Foundation of China(Nos.52104210,52174217,and 51874294)the Natural Science Foundation of Shanxi Province(No.20210302124350)Project Funded by China Postdoctoral Science Foundation(No.2022M710595).
文摘To enhance gas drainage in the soft and hard interbedded(SHI)coal seam,it’s necessary to unload the insitu stress and improve its gas migration performance.In this research,a directional hydraulic flushing(DHF)technology was carried out.The stress-unloading and gas migration improvement mechanism was analyzed through numerical simulation,and systematic engineering tests were conducted to verify the gas drainage effect.The results show that the improvement of gas migration performance in the SHI coal seam is caused by a combined effect of seepage-improving and diffusion-improving.After DHF,stress-unloading and plastic failure could be achieved both in the soft coal(SC)sublayer and in the hard coal(HC)sublayer.However,the gas diffusion capacity improves significantly in the SC sublayer,while the gas seepage capacity improves notably in the HC sublayer.Meanwhile,the stress-unloading and gas migration improvement effect improves with the flushing radius and the thickness of the SC sublayer.Besides,after adopting the DHF technology,the gas drainage effect improved markedly.The borehole number dropped by 49%,the gas drainage ratio increased from 26.0%to 48.2%,and the average coal roadway excavation speed increased from 2.4 to 5.6 m/d.