We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the opt...We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the optical and near-infrared bands (aperture size of 7 kpc) and from the literature,we find that the mean Age of central stellar populations in Spirals with pseudobulges is consistent with that of disky galaxies and is nearly constant against the bulge-to-total ratio (B/T).Paired Spirals have a slightly lower fraction of pure disk galaxies (B/T≤0.1) than their counterparts in the control sample.Compared to SFGs with classical bulges,those with pseudobulges have a higher (>2σ) mean of specific star formation rate (sSFR) enhancement (sSFR_(enh)=0.33±0.07 versus sSFR_(enh)=0.12±0.06) and broader scatter (by~1 dex).The eight SFGs that have the highest sSFR_(enh)in the sample all have pseudobulges.A majority (69%) of paired SFGs with strong enhancement (having sSFR more than5 times the median of the control galaxies) have pseudobulges.The Spitzer data show that the pseudobulges in these galaxies are tightly linked to nuclear/circum-nuclear starbursts.Pseudobulge SFGs in S+S and in S+E pairs have significantly (>3σ) different sSFR enhancement,with the means of sSFR_(enh)=0.45±0.08 and-0.04±0.11respectively.We find a decrease in the sSFR enhancements with the density of the environment for SFGs with pseudobulges.Since a high fraction (5/11) of pseudobulge SFGs in S+E pairs are in rich groups/clusters (loca density N_(1Mpc)≥7),the dense environment might be the cause for their low s SFR_(enh).展开更多
Clear windows onto emergent hadron mass(EHM)and modulations thereof by Higgs boson interactions are provided by observable measures of pion and kaon structure,many of which are accessible via generalised parton distri...Clear windows onto emergent hadron mass(EHM)and modulations thereof by Higgs boson interactions are provided by observable measures of pion and kaon structure,many of which are accessible via generalised parton distributions(GPDs).Beginning with algebraic GPD Ansätze,constrained entirely by hadron-scaleπand K valence-parton distribution functions(DFs),in whose forms both EHM and Higgs boson influences are manifest,numerous illustrations are provided.They include the properties of electromagnetic form factors,impact parameter space GPDs,gravitational form factors and associated pressure profiles,and the character and consequences of allorders evolution.The analyses predict that mass-squared gravitational form factors are stiffer than electromagnetic form factors;reveal that K pressure profiles are tighter than profiles,with both mesons sustaining near-core pressures at magnitudes similar to that expected at the core of neutron stars;deliver parameter-free predictions for and K valence,glue,and sea GPDs at the resolving scale l=2GeV;and predict that at this scale the fraction of meson mass-squared carried by glue and sea combined matches that lodged with the valence degrees-of-freedom,with a similar statement holding for mass-squared radii.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)No.11873055 and No.11933003sponsored(in part)by the Chinese Academy of Sciences(CAS)through a grant to the CAS South America Center for Astronomy(CASSACA)+4 种基金support from project PID2020-114414GB-100,financed by MCIN/AEI/10.13039/501100011033the Junta de Andaluciaía(Spain)grant FQM108support by the National Key R&D Program of China No.2017YFA0402600the National Natural Science Foundation of China(NSFC)grant Nos.11890692,12133008,and 12221003China Manned Space Project No.CMS-CSST2021-A04。
文摘We present a study of star-forming galaxies (SFGs) with pseudobulges (bulges with Sérsic index n<2) in a loca close major-merger galaxy pair sample (H-KPAIR).With data from new aperture photometries in the optical and near-infrared bands (aperture size of 7 kpc) and from the literature,we find that the mean Age of central stellar populations in Spirals with pseudobulges is consistent with that of disky galaxies and is nearly constant against the bulge-to-total ratio (B/T).Paired Spirals have a slightly lower fraction of pure disk galaxies (B/T≤0.1) than their counterparts in the control sample.Compared to SFGs with classical bulges,those with pseudobulges have a higher (>2σ) mean of specific star formation rate (sSFR) enhancement (sSFR_(enh)=0.33±0.07 versus sSFR_(enh)=0.12±0.06) and broader scatter (by~1 dex).The eight SFGs that have the highest sSFR_(enh)in the sample all have pseudobulges.A majority (69%) of paired SFGs with strong enhancement (having sSFR more than5 times the median of the control galaxies) have pseudobulges.The Spitzer data show that the pseudobulges in these galaxies are tightly linked to nuclear/circum-nuclear starbursts.Pseudobulge SFGs in S+S and in S+E pairs have significantly (>3σ) different sSFR enhancement,with the means of sSFR_(enh)=0.45±0.08 and-0.04±0.11respectively.We find a decrease in the sSFR enhancements with the density of the environment for SFGs with pseudobulges.Since a high fraction (5/11) of pseudobulge SFGs in S+E pairs are in rich groups/clusters (loca density N_(1Mpc)≥7),the dense environment might be the cause for their low s SFR_(enh).
基金Supported by National Natural Science Foundation of China(12135007,11805097)Jiangsu Provincial Natural Science Foundation of China(BK20180323)+2 种基金Spanish Ministry of Science and Innovation(MICINN)(PID2019-107844GB-C22)Junta de Andalucía(P18-FR-5057,UHU-1264517)University of Huelva(EPIT-2019)。
文摘Clear windows onto emergent hadron mass(EHM)and modulations thereof by Higgs boson interactions are provided by observable measures of pion and kaon structure,many of which are accessible via generalised parton distributions(GPDs).Beginning with algebraic GPD Ansätze,constrained entirely by hadron-scaleπand K valence-parton distribution functions(DFs),in whose forms both EHM and Higgs boson influences are manifest,numerous illustrations are provided.They include the properties of electromagnetic form factors,impact parameter space GPDs,gravitational form factors and associated pressure profiles,and the character and consequences of allorders evolution.The analyses predict that mass-squared gravitational form factors are stiffer than electromagnetic form factors;reveal that K pressure profiles are tighter than profiles,with both mesons sustaining near-core pressures at magnitudes similar to that expected at the core of neutron stars;deliver parameter-free predictions for and K valence,glue,and sea GPDs at the resolving scale l=2GeV;and predict that at this scale the fraction of meson mass-squared carried by glue and sea combined matches that lodged with the valence degrees-of-freedom,with a similar statement holding for mass-squared radii.