期刊文献+
共找到148篇文章
< 1 2 8 >
每页显示 20 50 100
Preparation and performance evaluation of the slickwater using novel polymeric drag reducing agent with high temperature and shear resistance ability
1
作者 Ming-Wei Zhao Zhen-Feng Ma +5 位作者 Cai-Li Dai WeiWu Yong-Quan Sun Xu-Guang Song Yun-Long Cheng Xiang-Yu Wang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1113-1121,共9页
Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performa... Slickwater fracturing fluids are widely used in the development of unconventional oil and gas resources due to the advantages of low cost,low formation damage and high drag reduction performance.However,their performance is severely affected at high temperatures.Drag reducing agent is the key to determine the drag reducing performance of slickwater.In this work,in order to further improve the temperature resistance of slickwater,a temperature-resistant polymeric drag reducing agent(PDRA)was synthesized and used as the basis for preparing the temperature-resistant slickwater.The slickwater system was prepared with the compositions of 0.2 wt%PDRA,0.05 wt%drainage aid nonylphenol polyoxyethylene ether phosphate(NPEP)and 0.5 wt%anti-expansion agent polyepichlorohydrindimethylamine(PDM).The drag reduction ability,rheology properties,temperature and shear resistance ability,and core damage property of slickwater were systematically studied and evaluated.In contrast to on-site drag reducing agent(DRA)and HPAM,the temperature-resistant slickwater demonstrates enhanced drag reduction efficacy at 90℃,exhibiting superior temperature and shear resistance ability.Notably,the drag reduction retention rate for the slickwater achieved an impressive 90.52%after a 30-min shearing period.Additionally,the core damage is only 5.53%.We expect that this study can broaden the application of slickwater in high-temperature reservoirs and provide a theoretical basis for field applications. 展开更多
关键词 Unconventional resources Polymeric drag reducing agent Slickwater High drag reduction rate Temperature resistance
下载PDF
Fast capture and stabilization of Li‐ions via physicochemical dual effects for an ultra‐stable self‐supporting Li metal anode
2
作者 Xuzi Zhang Yue Li +1 位作者 Hao Zhang Ge Li 《Carbon Energy》 SCIE EI CAS CSCD 2023年第9期88-100,共13页
Lithium(Li)metal is regarded as one of the most promising anode candidates for next-generation batteries due to its extremely high specific capacity and low redox potential.However,its application is still hindered by... Lithium(Li)metal is regarded as one of the most promising anode candidates for next-generation batteries due to its extremely high specific capacity and low redox potential.However,its application is still hindered by the uncontrolled growth of dendritic Li and huge volume fluctuation during cycles.To address these issues,flexible and self-supporting three-dimensional(3D)interlaced Ndoped carbon nanofibers(NCNFs)coated with uniformly distributed 2D ultrathin NiCo_(2)S_(4)nanosheets(denoted CNCS)were designed to eliminate the intrinsic hotspots for Li deposition.Physicochemical dual effects of CNCS arise from limited surface Li diffusivity with a higher Li affinity,leading to uniform Li nucleation and less random accumulation of Li,as confirmed by ab initio molecular dynamics simulations.Due to the unique structure,exchange current density is reduced significantly and metallic Li is further contained within the interspace between the NCNF and NiCo_(2)S_(4)nanosheets,preventing the formation of dendritic Li.The symmetric cell with a Li/CNCS composite anode shows a long-running lifespan for almost 1200 h,with an exceptionally low and stable overpotential under 1mA cm^(-2)/1 mAh cm^(-2).A full cell coupled with a LiFePO4 cathode at a low N/P ratio of 2.45 shows typical voltage profiles but more significantly enhanced performance than that of a LiFePO4 cathode coupled with a bare Li anode. 展开更多
关键词 3D scaffold design Li affinity Li diffusivity Li metal anode long lifespan
下载PDF
Upcycling of spent LiCoO_(2) cathodes via nickel- and manganese-doping 被引量:7
3
作者 Nianji Zhang Wenjing Deng +1 位作者 Zhixiao Xu Xiaolei Wang 《Carbon Energy》 SCIE CAS CSCD 2023年第1期247-256,共10页
Direct recycling has been regarded as one of the most promising approaches to dealing with the increasing amount of spent lithium‐ion batteries(LIBs).However,the current direct recycling method remains insufficient t... Direct recycling has been regarded as one of the most promising approaches to dealing with the increasing amount of spent lithium‐ion batteries(LIBs).However,the current direct recycling method remains insufficient to regenerate outdated cathodes to meet current industry needs as it only aims at recovering the structure and composition of degraded cathodes.Herein,a nickel(Ni)and manganese(Mn)co‐doping strategy has been adopted to enhance LiCoO_(2)(LCO)cathode for next‐generation high‐performance LIBs through a conventional hydrothermal treatment combined with short annealing approach.Unlike direct recycling methods that make no changes to the chemical composition of cathodes,the unique upcycling process fabricates a series of cathodes doped with different contents of Ni and Mn.The regenerated LCO cathode with 5%doping delivers excellent electrochemical performance with a discharge capacity of 160.23 mAh g^(−1) at 1.0 C and capacity retention of 91.2%after 100 cycles,considerably surpassing those of the pristine one(124.05 mAh g^(−1) and 89.05%).All results indicate the feasibility of such Ni–Mn co‐doping‐enabled upcycling on regenerating LCO cathodes. 展开更多
关键词 direct recycling lithium cobalt oxide Ni–Mn co-doping spent lithium-ion batteries upcycling
下载PDF
Strengthening absorption ability of Co-N-C as efficient bifunctional oxygen catalyst by modulating the d band center using MoC 被引量:5
4
作者 Jianwen Liu Ying Guo +2 位作者 Xian-Zhu Fu Jing-Li Luo Chunyi Zhi 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期459-469,共11页
Co-N-C is a promising oxygen electrochemical catalyst due to its high stability and good durability.However,due to the limited adsorption ability improvement for oxygen-containing intermediates,it usually exhibits ina... Co-N-C is a promising oxygen electrochemical catalyst due to its high stability and good durability.However,due to the limited adsorption ability improvement for oxygen-containing intermediates,it usually exhibits inadequate catalytic activity with 2-electron pathway and high selectivity of hydrogen peroxide.Herein,the adsorption of Co-N-C to these intermediates is modulated by constructing heterostructures using transition metals and their derivatives based on d-band theory.The heterostructured nanobelts with MoC core and pomegranate-like carbon shell consisting of Co nanoparticles and N dopant(MoC/Co-N-C)are engineered to successfully modulate the d band center of active Co-N-C sites,resulting in a remarkably enhanced electrocatalysis performance.The optimally performing MoC/Co-N-C exhibits outstanding bi-catalytic activity and stability for the oxygen electrochemistry,featuring a high wave-half potential of 0.865 V for the oxygen reduction reaction(ORR)and low overpotential of 370 mV for the oxygen evolution reaction(OER)at 10 mA cm^(-2).The zinc air batteries with the MoC/Co-N-C catalyst demonstrate a large power density of 180 mW cm^(-2)and a long cycling lifespan(2000 cycles).The density functional theory calculations with Hubbard correction(DFT+U)reveal the electron transferring from Co to Mo atoms that effectively modulate the d band center of the active Co sites and achieve optimum adsorption ability with"single site double adsorption"mode. 展开更多
关键词 Bifunctional oxygen catalysts Pomegranate-like shell D band theory Enhanced synergistic effect Rechargeable zinc air battery
下载PDF
Exploring the mechanisms of calcium carbonate deposition on various substrates with implications for effective anti-scaling material selection
5
作者 Lu Gong Fei-Yi Wu +4 位作者 Ming-Fei Pan Jun Huang Hao Zhang Jing-Li Luo Hong-Bo Zeng 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2870-2880,共11页
The unexpected scaling phenomena have resulted in significant damages to the oil and gas industries,leading to issues such as heat exchanger failures and pipeline clogging.It is of practical and fundamental importance... The unexpected scaling phenomena have resulted in significant damages to the oil and gas industries,leading to issues such as heat exchanger failures and pipeline clogging.It is of practical and fundamental importance to understand the scaling mechanisms and develop efficient anti-scaling strategies.However,the underlying surface interaction mechanisms of scalants(e.g.,calcite)with various substrates are still not fully understood.In this work,the colloidal probe atomic force microscopy(AFM)technique has been applied to directly quantify the surface forces between calcite particles and different metallic substrates,including carbon steel(CR1018),low alloy steel(4140),stainless steel(SS304)and tungsten carbide,under different water chemistries(i.e.,salinity and pH).Measured force profiles revealed that the attractive van der Waals(VDW)interaction contributed to the attachment of the calcium carbonate particles on substrate surfaces,while the repulsive electric double layer(EDL)interactions could inhibit the attachment behaviors.High salinity and acidic p H conditions of aqueous solutions could weaken the EDL repulsion and promote the attachment behavior.The adhesion of calcite particles with CR1018 and4140 substrates was much stronger than that with SS304 and tungsten carbide substrates.The bulk scaling tests in aqueous solutions from an industrial oil production process showed that much more severe scaling behaviors of calcite was detected on CR1018 and 4140 than those on SS304 and tungsten carbide,which agreed with surface force measurement results.Besides,high salinity and acidic p H can significantly enhance the scaling phenomena.This work provides fundamental insights into the scaling mechanisms of calcite at the nanoscale with practical implications for the selection of suitable antiscaling materials in petroleum industries. 展开更多
关键词 Scaling phenomenon Metallic substrates Surface forces Bulk scaling tests
下载PDF
Pre-heating temperature induced flowability and wax deposition characteristics of crude oil adding wax inhibitors 被引量:1
6
作者 Bo Yao Hao-Ran Zhu +4 位作者 Bao-Dong Yan Chuan-Xian Li Fei Yang Guang-Yu Sun Hong-Bo Zeng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2468-2478,共11页
This paper investigated the effects of pre-heating treatment temperatures(T_(pre))on the flowability and wax deposition characteristics of a typical waxy crude oil after adding wax inhibitors.It is found that there is... This paper investigated the effects of pre-heating treatment temperatures(T_(pre))on the flowability and wax deposition characteristics of a typical waxy crude oil after adding wax inhibitors.It is found that there is little difference in wax precipitation exothermic characteristics of crude oils at different T_(pre),as well as the wax crystal solubility coefficient in the temperature range of 25-30℃.For the undoped crude oil,the flowability after wax precipitation gets much improved and the wax deposition is alleviated as T_(pre)increasing.At T_(pre)=50℃,the viscosity and wax deposition rate of crude oil adding wax inhibitors are higher than those of the undoped crude oil.When the T_(pre)increases to 60,70,and 80℃,the flowability of the doped crude oil are largely improved and the wax deposition is suppressed with the T_(pre)increase,but the wax content of wax deposit increases gradually.It is speculated that,on the one hand,the T_(pre)increase helps the dispersion of asphaltenes into smaller sizes,which facilitates the co-crystallization with paraffin waxes and generates more aggregated wax crystal flocs.This weakens the low-temperature gel structure and increases the solid concentration required for the crosslink to form the wax deposit.On the other hand,the decrease in viscosity increases the diffusion rate of wax molecules and accelerates the aging of wax deposits.The experimental results have important guiding significance for the pipeline transportation of doped crude oils. 展开更多
关键词 Pre-heating treatment Wax inhibitor FLOWABILITY Wax deposition Waxy crude oil
下载PDF
Effect of modification degrees on the interfacial properties and EOR efficiency of amphiphilic Janus graphene oxide
7
作者 Han Jia Xin Wei +7 位作者 Qiu-Xia Wang Yuan-Bo Wang Shi-Jie Wen Fang-Ning Fan Qiang Wang Zhe Wang De-Xin Liu Pan Huang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1217-1224,共8页
Asymmetrically modified Janus graphene oxide(JGO)has attracted great attention due to its unique physical chemistry properties and wide applications.The modification degree of Janus nanosheets inevitably affects their... Asymmetrically modified Janus graphene oxide(JGO)has attracted great attention due to its unique physical chemistry properties and wide applications.The modification degree of Janus nanosheets inevitably affects their interfacial activity,which is essential for their performances in enhanced oil recovery(EOR).In this study,the interfacial properties of Janus graphene oxide(JGO)with various modification degrees at liquid-liquid and liquid-solid interfaces were systematically evaluated via the measurements of interfacial tension(IFT),dilatational modulus,contact angle,and EOR efficiency was further assessed by core flooding tests.It is found that JGO-5 with higher modification degree exhibits the greater ability to reduce IFT(15.16 mN/m)and dilatational modulus(26 mN/m).Furthermore,JGO can construct interfacial and climbing film with the assistance of hydrodynamic power to effectively detach the oil from the rock surface and greatly enhance oil recovery.Moderately modified JGO-2 can highly improve recovery of residual crude oil(11.53%),which is regarded as the promising EOR agent in practical application.The present study firstly focuses on the effects of modification degrees on the JGO interfacial properties and proposes diverse EOR mechanisms for JGO with different modification degrees. 展开更多
关键词 Graphene oxide Modification degrees Janus nanosheets Interfacial film EOR
下载PDF
Microstructure and mechanical properties of Mg-to-Al dissimilar welded joints with an Ag interlayer using ultrasonic spot welding 被引量:16
8
作者 H.Peng D.L.Chen +3 位作者 X.F.Bai P.Q.Wang D.Y.Li X.Q.Jiang 《Journal of Magnesium and Alloys》 SCIE 2020年第2期552-563,共12页
Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in re... Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in relation to welding energy.Mg/Al interface was superseded by Mg/Ag and Al/Ag interfaces,and unfavorable Mg门A-intermetallic compound was eliminated.Ag foil was observed to be intact in the nugget center,while it was broken or dissolved at the nugget edge at high welding energy levels.The diffusion layer at the Mg/Ag interface consisted of two distinctive sub-layers:Mg3Ag intermetallic compound adjoining Ag foil,and Mg3Ag-l-Mg eutectic structure adjacent to Mg.Only a thin diffusion layer consisting mainly of Ag3Al occurred al lhe Al/Ag interface.The tensile lap shear strength first increased,reached its peak value,and then decreased with increasing welding energy.The shear strength achieved in the present study was〜31%higher than that of the joint without interlayer.Interfacial failure occurred at all energy levels,with Ag foil particles or fragments being stuck on both Mg and Al sides due to its intense interaction with Mg and Al via accelerated diffusion during USW.The results obtained pave the way for the challenging dissimilar welding between Mg and Al alloys. 展开更多
关键词 Magnesium alloy Aluminum alloy Ultrasonic spot welding Ag interlayer Microstructure Tensile lap shear strength
下载PDF
Review of micro-scale and atomic-scale corrosion mechanisms of second phases in aluminum alloys 被引量:13
9
作者 Yuan-yuan JI Yun-ze XU +3 位作者 Bin-bin ZHANG Yashar BEHNAMIAN Da-hai XIA Wen-bin HU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第11期3205-3227,共23页
Localized corrosion of aluminum(Al)alloys,such as pitting corrosion,intergranular corrosion,and stress corrosion cracking is closely related to the micro-galvanic corrosion between the second phase and the Al matrix.U... Localized corrosion of aluminum(Al)alloys,such as pitting corrosion,intergranular corrosion,and stress corrosion cracking is closely related to the micro-galvanic corrosion between the second phase and the Al matrix.Using high-resolution transmission electron microscopy and first principles calculations,the factors that affect corrosion mechanisms of the second phase in Al alloys at micro-scale and atomic-scale were examined,including the composition and structure of second phase,pH of the environment,stress and adsorption behavior of adsorbates(such as Cl^(−),H_(2)O,OH−and O_(2)^(−). 展开更多
关键词 Al alloys CORROSION DEALLOYING first principles calculations
下载PDF
CoxP@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption 被引量:5
10
作者 Mei Li Xiaohui Deng +6 位作者 Yue Liang Kun Xiang Dan Wu Bin Zhao Haipeng Yang Jing-Li Luo Xian-Zhu Fu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期314-323,共10页
The inefficiency of water splitting is mainly due to the sluggish anodic water oxidation reaction. Replacing water oxidation with thermodynamically more favorable selective methanol oxidation reaction and developing r... The inefficiency of water splitting is mainly due to the sluggish anodic water oxidation reaction. Replacing water oxidation with thermodynamically more favorable selective methanol oxidation reaction and developing robust bifunctional electrocatalysts are of great significance. Herein, a hierarchical heteronanostructure with Ni–Co layered double hydroxide(LDH) ultrathin nanosheets coated on cobalt phosphide nanosheets arrays(CoxP@NiCo-LDH) are fabricated and used for co-electrolysis of methanol/water to co-produce value-added formate and hydrogen with saving energy. Benefiting from the fast charge transfer introduced by phosphide nanoarrays, the synergy in nanosheets catalysts with hetero-interface,CoxP@NiCo-LDH/Ni foam(NF) exhibits superior electrocatalytic performance(10 mA cm-2@ 1.24 V and-0.10 V for methanol selective oxidation and hydrogen evolution reaction, respectively). Furthermore,CoxP@NiCo-LDH/NF-based symmetric two-electrode electrolyzer drives a current density of 10 m A cm-2 with a low cell voltage of only 1.43 V and the Faradaic efficiency towards the generation of formate and H2 are close to 100% in the tested range of current density(from 40 to 200 m A cm-2). This work highlights the positive effect of hetero-interaction in the design of more efficient eletrocatalysts and might guide the way towards facile upgrading of alcohols and energy-saving electrolytic H2 co-generation. 展开更多
关键词 Cobalt phosphide Bifunctional electrocatalysts Selective methanol oxidation H2 evolution reaction Co-electrolysis
下载PDF
Degradation Mechanism of Lacquered Tinplate in Energy Drink by in-situ EIS and EN 被引量:4
11
作者 周超 WANG Jihui +5 位作者 SONG Shizhe 夏大海 WANG Ke SHEN Chen LUO Bing SHI Jiangbo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第2期367-372,共6页
The corrosion process of phenolic epoxy coated tinplate in energy drink was investigated by in-situ electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) techniques. The experimental results in... The corrosion process of phenolic epoxy coated tinplate in energy drink was investigated by in-situ electrochemical impedance spectroscopy(EIS) and electrochemical noise(EN) techniques. The experimental results indicate that the degradation process of novolac epoxy coated tinplate in energy drink can be divided into three main stages: organic coating wetted by the beverage; corrosion initiation beneath the organic coating; and corrosion extension process. It was proposed that the tin coating and carbon steel were mainly corroded by organic acids in energy drink through the pores of the organic coating. After the tin coating was corroded, the carbon steel started to corrode due to its higher electrochemical activity and became to be the dominated corrosion reaction. 展开更多
关键词 TINPLATE energy drink electrochemical impedance spectroscopy electrochemical noise corrosion mechanism
原文传递
Effect of SiC content on dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites 被引量:3
12
作者 Sareh MOSLEH-SHIRAZI Farshad AKHLAGHI Dong-yang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1801-1808,共8页
The corrosion, corrosive wear and dry sliding wear of nanocomposites, are extremely complicated and involve various chemical, physical anbd mechanical factors. The aim of this work is to investigate the effects of nan... The corrosion, corrosive wear and dry sliding wear of nanocomposites, are extremely complicated and involve various chemical, physical anbd mechanical factors. The aim of this work is to investigate the effects of nanosized SiC content on the hardness, dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites synthesized by mechanical milling cold pressing and hot extrusion. The corrosion resistance of these composites in 3%NaCl solution was investigated by electrochemical polarization testing and their dry sliding as well as corrosive wear resistance in the same solution was evaluated using a pin-on-disc tester. The microstructures of the samples and their worn surfaces were examined using scanning electron microscopy. It was shown that the dry sliding wear and corrosion resistance of these nanocomposites were improved with the increase of SiC content. It was concluded that due to the lubrication effect of the solution, both the friction coefficient and frictional heat that might soften the material were reduced. In addition, the improved strength of the nanocomposites combined with their better corrosion resistance contributed to their increased corrosive wear resistance, compared with the base alloy. The prominent wear mechanism in the unreinforced alloy was adhesive wear, in the Al/SiC nanocomposites, the wear mechanism changed to abrasive. 展开更多
关键词 Al 6061 SIC NANOCOMPOSITE mechanical milling CORROSION dry sliding wear corrosive wear
下载PDF
Effect of H_2S Flow Rate and Concentration on Performance of H_2S/Air Solid Oxide Fuel Cell 被引量:4
13
作者 钟理 张腾云 +3 位作者 陈建军 WEI Guolin LUO Jingli K.Chung 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期306-309,共4页
A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performa... A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt, air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃. Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 17500mA·cm-2 and 200mW·cm-2, are obtained with pure H2S flow rate of 50ml·min-1 and air flow rate of 100ml·min-1 at 850℃. 展开更多
关键词 fuel cell performance H2S/air fuel cell solid oxide fuel cell (SOFC)
下载PDF
Improving corrosive wear resistance of Mg-Zn-Y-Zr alloys through heat treatment
14
作者 S.D.Wang M.Y.Wu +1 位作者 D.K.Xu En-hou Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期1981-1995,共15页
The wear behavior of an as-received Mg-Zn-Y-Zr alloy before and after a facile heat treatment was investigated under sliding in air and 0.5 wt.%NaCl solution.Results revealed that the wear resistance of the alloy was ... The wear behavior of an as-received Mg-Zn-Y-Zr alloy before and after a facile heat treatment was investigated under sliding in air and 0.5 wt.%NaCl solution.Results revealed that the wear resistance of the alloy was remarkably enhanced after the heat treatment,irrespective of testing condition.The wear mechanism was predominantly abrasive wear accompanied by oxidation under the dry sliding condition,while corrosive wear was dominant under sliding in the NaCl solution.The superior corrosive wear resistance was attributed to the homogenous distribution of fine I-phase precipitates in the alloy by the heat treatment,leading to a reduction in wear,corrosion as well as wear-corrosion synergy.The wear-accelerated corrosion rate was remarkably alleviated after the heat treatment. 展开更多
关键词 Magnesium alloy Heat treatment CORROSION WEAR TRIBOCORROSION
下载PDF
Tribological behavior of ZK60Gd alloy reinforced by SiC particles after precipitation hardening
15
作者 Ehsan Momeni Hassan Sharifi +3 位作者 Morteza Tayebi Ahmad Keyvani Ermia Aghaie Yashar Behnamian 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第9期3362-3381,共20页
In this research, the effect of precipitation hardening on the tribological behavior of the ZK60Gd/SiC composite was studied. For this purpose, ZK60Gd alloy containing with 5 and 10 wt% SiC were produced with stir cas... In this research, the effect of precipitation hardening on the tribological behavior of the ZK60Gd/SiC composite was studied. For this purpose, ZK60Gd alloy containing with 5 and 10 wt% SiC were produced with stir casting method. The microstructure characterization of the samples showed the wide distributions of Mg_(7)Zn_(3) and Gd(Mg_(0.5)Zn_(0.5)) precipitates were formed during casting. The results of hardness measurement after precipitation hardening at different temperatures showed that the hardness peck was obtained at 175 ℃. The wear tests with different loads(10, 40, 60, 90, and 120 N) and velocities(0.1, 0.3, 0.6, and 0.9 m/s) were performed on the as-cast and heat treated sample at 125, 175, and 225 for 12 h. Between the different precipitation hardening conditions, the precipitation hardened samples at 175 ℃ had the highest hardness values and least wear rate. The sample containing 10% reinforcement had the least wear rate between the unreinforced alloy and the composites. The results showed that abrasive, adhesive, delamination, MML, and fatigue wear mechanisms were the dominant wear mechanisms for the composite samples. In contrast, the dominant wear mechanism for the unreinforced samples was abrasive, adhesive,delamination, MML, and plastic deformation. 展开更多
关键词 Precipitation hardening COMPOSITE GADOLINIUM Mg-Zn-Zr-Gd Wear map
下载PDF
Influence of Annealing Treatment on Microstructure Evolution and Mechanical Property of Friction Stir Weld AZ31 Mg Alloys 被引量:2
16
作者 李亚杰 QIN Fengming +3 位作者 LIU Cuirong LI Leijun ZHAO Xiaodong 吴志生 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第2期417-425,共9页
In order to improve microstructure distribution and mechanical properties of Mg alloy joint by annealing treatment, die-casting AZ31 Mg alloy was successfully welded at rotation speed of 1 400 rpm and travel speed of ... In order to improve microstructure distribution and mechanical properties of Mg alloy joint by annealing treatment, die-casting AZ31 Mg alloy was successfully welded at rotation speed of 1 400 rpm and travel speed of 200 mm/min. The welded joints were annealed at 150-300 ℃ for 15-120 min and then were subjected to transverse tensile. The microstructure of annealed joints was analyzed by optical microscopy and electron backscatter diffraction. The experimental results indicate that(0001) texture intensity in stir zone significantly reduces and sharp transition of grain size is relieved in the interface between stir zone and thermo-mechanically affected zone after annealed at 200 ℃ for 30 min. Meanwhile, the elongation is increased from 7.5% to 13.0% and strength is increased slightly. It is because that annealing treatment can inhibit twin transformation and retain its ability to coordinate deformation during tensile deformation, which contributes to the improvement of plasticity. In addition, annealing treatment can increase the width of interfacial transition zone and lead to gradual transition of grain size between the SZ and TMAZ, which balances dislocation diffusion rate in different zone. 展开更多
关键词 magnesium alloys friction STIR welding annealing treatment texture distribution PLASTICITY
原文传递
Erratum to“Probing the Interfacial Forces and Surface Interaction Mechanisms in Petroleum Production Processes”[Engineering 18(2022)49-61]
17
作者 Diling Yang Xuwen Peng +7 位作者 Qiongyao Peng Tao Wang Chenyu Qiao Ziqian Zhao Lu Gong Yueliang Liu Hao Zhang Hongbo Zeng 《Engineering》 SCIE EI CAS CSCD 2023年第3期233-233,共1页
In Ref.[1],Eq.(8)has a typo,the following replacement should be done.γ_(bb)/2rδ/δr(rδ(r,t)/δr=2γ_(bb)/R_(bb)-Þ(t,t)-Ⅱ[h[r,t)](bubble=drop-bubble=drop)The publisher regrets an error in the original–article... In Ref.[1],Eq.(8)has a typo,the following replacement should be done.γ_(bb)/2rδ/δr(rδ(r,t)/δr=2γ_(bb)/R_(bb)-Þ(t,t)-Ⅱ[h[r,t)](bubble=drop-bubble=drop)The publisher regrets an error in the original–article,and the sentence that explained the equation“Eqs.(8)–(10)show the augmented Young–Laplace equation for the interactions of gas bubbles or liquid droplets in different configurations,where Rb is the bubble/drop radius,Rp is the particle radius,Rbp=(1/Rb+1/Rp)1. 展开更多
关键词 BUBBLE RADIUS EQUATION
下载PDF
New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior 被引量:5
18
作者 Ya-feng Fu Wan-zhong Yin +6 位作者 Xian-shu Dong Chuan-yao Sun Bin Yang Jin Yao Hong-liang Li Chuang Li Hyunjung Kim 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第12期1898-1907,共10页
The inadvertent dissolution of gangue minerals is frequently detrimental to the flotation of valuable minerals.We investigated the effect of conditioning time on the separation of brucite and serpentine by flotation.B... The inadvertent dissolution of gangue minerals is frequently detrimental to the flotation of valuable minerals.We investigated the effect of conditioning time on the separation of brucite and serpentine by flotation.By analyzing the Mg2+concentration,relative element content,and pulp viscosity,we studied the effect of mineral dissolution on brucite flotation.The results of artificially mixed mineral flotation tests(with-10μm serpentine)showed that by extending the conditioning time from 60 to 360 s,a large amount of Mg2+on the mineral surface gradually dissolved into the pulp,resulting in a decreased brucite recovery(from 83.83%to 76.79%)and an increased recovery of serpentine from 52.12%to 64.03%.To analyze the agglomeration behavior of brucite and serpentine,we used scanning electron microscopy,which clearly showed the different adhesion behaviors of different conditioning times.Lastly,the total interaction energy,as determined based on the extended DLVO(Derjaguin-Landau-Verwey-Overbeek)theory,also supports the conclusion that the gravitational force between brucite and serpentine increases significantly with increased conditioning time. 展开更多
关键词 behavior INSIGHT viscosity
下载PDF
Real-Time Assessment and Diagnosis of Process Operating Performance 被引量:2
19
作者 Shabnam Sedghi Biao Huang 《Engineering》 SCIE EI 2017年第2期214-219,共6页
Over time, the performance of processes may deviate from the initial design due to process variations anduncertainties, making it necessary to develop systematic methods for online optimality assessment basedon routin... Over time, the performance of processes may deviate from the initial design due to process variations anduncertainties, making it necessary to develop systematic methods for online optimality assessment basedon routine operating process data. Some processes have multiple operating modes caused by the set pointchange of the critical process variables to achieve different product specifications. On the other hand, theoperating region in each operating mode can alter, due to uncertainties. In this paper, we will establish anoptimality assessment framework for processes that typically have multi-mode, multi-region operations,as well as transitions between different modes. The kernel density approach for mode detection is adopt-ed and improved for operating mode detection. For online mode detection, the model-based clusteringdiscriminant analysis (MclustDA) approach is incorporated with some a priori knowledge of the system. Inaddition, multi-modal behavior of steady-state modes is tackled utilizing the mixture probabilistic principalcomponent regression (MPPCR) method, and dynamic principal component regression (DPCR) is used toinvestigate transitions between different modes. Moreover, a probabilistic causality detection method basedon the sequential forward floating search (SFFS) method is introduced for diagnosing poor or non-optimumbehavior. Finally, the proposed method is tested on the Tennessee Eastman (TE) benchmark simulation pro-cess in order to evaluate its performance. 展开更多
关键词 OPTIMALITY ASSESSMENT PROBABILISTIC principal COMPONENT regression MULTI-MODE
下载PDF
A promising method for recovery of LiMn_(2)O_(4) and graphite from waste lithium-ion batteries: Roasting enhanced flotation 被引量:2
20
作者 HAN Jun-wei CHEN Ling-ling +2 位作者 ZHONG Xue-hu WEI Xu-yi QIN Wen-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第9期2873-2887,共15页
In this study,a roasting enhanced flotation process was proposed to recover LiMn_(2)O_(4) and grapite from waste lithium-ion batteries(LIBs).The effects of roasting temperature and time on the surface modification was... In this study,a roasting enhanced flotation process was proposed to recover LiMn_(2)O_(4) and grapite from waste lithium-ion batteries(LIBs).The effects of roasting temperature and time on the surface modification was investigated,and a series of analytical technologies were used to reveal process mechanism.The results indicate that LiMn_(2)O_(4) can be effectively separated from graphite via flotation after the roasting.The flotation grade of LiMn_(2)O_(4) was significantly increased from 63.10%to 91.36%after roasting at 550℃for 2 h.The TG-DTG analysis demonstrates that the difficulty in flotation separation of LiMn_(2)O_(4) from graphite is caused by the organic binder and electrolytes coating on their surfaces.The XRD,SEM,XPS,and contact angle analyses confirm that the organic films on the surfaces of those materials can be effectively removed by roasting,after which the wettability of LiMn_(2)O_(4) is regained and thus the surface wettability difference between the cathode and anode materials is increased significantly.The closed-circuit flotation test indicates that a LiMn_(2)O_(4) sample with high grade of 99.81%is obtained,while the recovery of LiMn_(2)O_(4) is as high as 99.40%.This study provides an economical and eco-friendly way to recycling waste LIBs. 展开更多
关键词 spent lithium-ion battery resource recycling ROASTING surface modification FLOTATION
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部