The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a c...The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a carbonized brewer's spent grain(CBSG)biochar anode with a Li_(2)S-graphene composite cathode(Li_(2)S70Gr30)is proposed.This design is particularly attractive for applying a cost-effective,high performance,environment friendly,and safe anode material,as an alternative to standard graphite and metallic lithium in emerging battery technologies.The anodic and cathodic materials are characterized in terms of structure,morphology and composition through X-ray diffraction,scanning and transmission electron microscopy,X-ray photoelectron and Raman spectroscopies.Furthermore,an electrochemical characterization comprising galvanostatic cycling,rate capability and cyclic voltammetry tests were carried out both in half-cell and full-cell configurations.The systematic investigation reveals that unlike graphite,the biochar electrode displays good compatibility with the electrolyte typically employed in sulfur batteries.The CBSG/Li_(2)S70Gr30 full-cell demonstrates an initial charge and discharge capacities of 726 and 537 mAh g^(-1),respectively,at 0.05C with a coulombic efficiency of 74%.Moreover,it discloses a reversible capacity of 330 mAh g^(-1)(0.1 C)after over 300 cycles.Based on these achievements,the CBSG/Li_(2)S70Gr30 battery system can be considered as a promising energy storage solution for electric vehicles(EVs),especially when taking into account its easy scalability to an industrial level.展开更多
Lithium-sulfur batteries are emerging as sustainable replacements for current lithium-ion batteries.The commercial viability of this novel type of battery is still under debate due to the extensive use of highly react...Lithium-sulfur batteries are emerging as sustainable replacements for current lithium-ion batteries.The commercial viability of this novel type of battery is still under debate due to the extensive use of highly reactive lithium-metal anodes and the complex electrochemistry of the sulfur cathode.In this research,a novel sulfur-based battery has been proposed that eliminates the need for metallic lithium anodes and other critical raw materials like cobalt and graphite,replacing them with biomass-derived materials.This approach presents numerous benefits,encompassing ample availability,cost-effectiveness,safety,and environmental friendliness.In particular,two types of biochar-based anode electrodes(non-activated and activated biochar)derived from spent common ivy have been investigated as alternatives to metallic lithium.We compared their structural and electrochemical properties,both of which exhibited good compatibility with the typical electrolytes used in sulfur batteries.Surprisingly,while steam activation results in an increased specific surface area,the non-activated ivy biochar demonstrates better performance than the activated biochar,achieving a stable capacity of 400 mA h g^(−1)at 0.1 A g^(−1)and a long lifespan(>400 cycles at 0.5 A g^(−1)).Our results demonstrate that the presence of heteroatoms,such as oxygen and nitrogen positively affects the capacity and cycling performance of the electrodes.This led to increased d-spacing in the graphitic layer,a strong interaction with the solid electrolyte interphase layer,and improved ion transportation.Finally,the non-activated biochar was successfully coupled with a sulfur cathode to fabricate lithium-metal-free sulfur batteries,delivering a specific energy density of~600 Wh kg^(−1).展开更多
Soil characterization and heavy metals in different layers (0 - 15 cm;15 - 30 cm and 30 - 45 cm depth) of automobile mechanic waste dumps were studied. The soils showed remarkably high levels of all the metals above b...Soil characterization and heavy metals in different layers (0 - 15 cm;15 - 30 cm and 30 - 45 cm depth) of automobile mechanic waste dumps were studied. The soils showed remarkably high levels of all the metals above background concentrations with most (Ni, Cu, Fe, Cr and Cd) decreasing with soil depth. The distribution pattern were in the following order Fe > Cu > Zn > Pb > Cr > Ni > Cd. Across all the sampling locations and profiles, Fe and Cd showed the highest (476.4 μg·g-1) and least (37.5 μg·g-1) mean concentrations respectively. Pollution load index (PLI) and index of geoaccumulation (Igeo) revealed overall high and moderate contamination respectively but the enrichment factors (EFs) for Pb Ni and Cd are severe. The inter-element relationship revealed the identical source of elements in the soils of the studied area. The accuracy of the results has been cheeked using the standard reference material;SRM (PACS-2). The mechanic waste dumps represent potential sources of heavy metal pollution to environment. The elevated levels of heavy metals in these soil profiles constitute a serious threat to both surface and groundwater.展开更多
An experimental investigation of the crystallographic,Raman and transport properties of the Ce_(1-x)(Nd_(0.74)Tm_(0.26))_xO_(2-x/2)(0.1≤x≤0.6) doped ceria system was performed with the aim of setting out correlation...An experimental investigation of the crystallographic,Raman and transport properties of the Ce_(1-x)(Nd_(0.74)Tm_(0.26))_xO_(2-x/2)(0.1≤x≤0.6) doped ceria system was performed with the aim of setting out correlations between structural features and ionic conductivity of the material.The chosen composition ensures that the average size of the Nd^(3+) and Tm^(3+) doping ions coincides with the one of Sm^(3+);even so,the studied system presents larger cell parameters and a wider compositional extent of the CeO_(2)-based solid solution than Sm-doped ceria.Moreover,the occurrence of two different activation energies to ionic conduction below and above ~750 K determines the existence of two distinct conduction regimes.The described experimental results agree with the formation below the threshold temperature of1 V_O2 Tm'_(Ce) trimers,which promote the incorporation of Nd'_(Ce) isolated defects into the CeO_(2)-based solid solution.In the high temperature range the dissociation of trimers induces the appearance of a lower activation energy;the extrapolation of its value at infinite dilution provides a result in good accordance with the expected binding energy of 1 V_ORE'_(Ce) dimers,pointing at their stability even in the high temperature conduction regime.展开更多
Carissa edulis Vahl is well known in Sudanese herbal medicine,commonly used for treatment of epilepsy,headache,chest pains,rheumatism,skin lesions,mania and other psychoactive diseases.The investigations of the safety...Carissa edulis Vahl is well known in Sudanese herbal medicine,commonly used for treatment of epilepsy,headache,chest pains,rheumatism,skin lesions,mania and other psychoactive diseases.The investigations of the safety use for psychoactive purposes in Sudanese healing traditions and identifying secondary metabolites of the plant extracts are the key steps towards determination of appropriate medicinal doses.Therefore,one of the chemical constituents was isolated and structurally identified by 1H-NMR and LC-MS.With the aim of evaluating Carissa edulis folk random uses,the isolated compound was compared with reference artificial drugs Lormetazepam,a potentially toxic compound.Structure investigations confirm that the isolated product was benzodiazepines analogous 7-chloro 1,4-benzodiazepine-2-ones.It is important to know the potential toxicity of certain plant in order to assess the therapeutic effect of it,as these are slight distinctions between the medicinal and toxic doses.In general the results obtained justify the use of the roots of Carissa edulis in traditional medicine for the treatment of some psychiatric diseases.展开更多
Here we report on the study of vertical alignment of a nematic liquid crystal due to the segregation between perfluorinated and the polysiloxane groups of a multi-component composite alignment material. The measured s...Here we report on the study of vertical alignment of a nematic liquid crystal due to the segregation between perfluorinated and the polysiloxane groups of a multi-component composite alignment material. The measured surface anchoring energy was found to depend on the relative amount of polysiloxane matrix in the composite material. These kind of self-assembly will reduce the preparation time for display by eliminating few steps.展开更多
A detailed quantum mechanical analysis of electronic disposition of five aminopyrimidoisoquinolinequinones (APIQs) was performed after extraction of this subset of compounds from a larger data set of APIQs via a repor...A detailed quantum mechanical analysis of electronic disposition of five aminopyrimidoisoquinolinequinones (APIQs) was performed after extraction of this subset of compounds from a larger data set of APIQs via a reported clustering methodology (Elfaki, et al. 2020). Both semi empirical PM3 method and DFT quantum mechanical methods were used to calculate global and local quantum mechanical descriptors (QMDs) to define the electronic environment of these molecules in attempt to rationalize their observed anti-cancer response variability. The biological response is the anticancer activity against human gastric adenocarcenoma (AGS) cell line. The correlation matrix between the calculated global electronic descriptors and biological activity demonstrated that the global dipole moment gives the highest correlation. The local electronic environment was analysed by The Mullikan charges (MC) and Fukui functions for N-5, C-6, C-8 in addition to the N atom of phenylamino side group at C-8. MCs furnished no useful information as each of these atoms had almost identical MC values for all the five compounds with exception of C-6 which gave varied values. Regressing MCs of C-6 against the response traces 60% of the latter variability. As C-6 is an extra annular methyl carbon adjacent to N-5 in isoquinoline residue of APIQ, we reasoned that the chemical reactivities of 4 out of the 5 APIQs might be due to a Chichibabin-type tautomerism implying a possible alkylation aspect in their mechanism of action. The corresponding Fukui functions (f<sup>-</sup>, f<sup>+</sup> and f<sup>0</sup>) showed a considerable consistency with the patterns of chemical reactivity exhibited by this small set of APIQs.展开更多
In recent years,hydrothermal treatment has been considered as among the most promising option for sludge solubilisation and carbon recovery in terms of sludge management.In this study,the effect of different individua...In recent years,hydrothermal treatment has been considered as among the most promising option for sludge solubilisation and carbon recovery in terms of sludge management.In this study,the effect of different individual hydrothermal operating conditions like temperature(110-250℃),sludge pH(6-13)and reaction time(0.5-3 h)were varied to understand their influence on sludge solubilisation.The most effective hydrothermal conditions(severity factor of 9.7)were found to be at 200℃,sludge pH of 12 and reaction time of 1 h which solubilised about 1743 mg/g and 131 mg/g of COD and carbohydrates respectively into the aqueous phase.Also,gas chromatography-mass spectrometry(GC-MS)analysis was done that identified the organic compounds in the treated liquid phase to be mainly carboxylic acids,phenols,esters,and their derivatives.Although further studies are required to efficiently separate and recover the different organic compounds present,this work provides more insights for future valorisation of the organic rich hydrothermally treated liquid phase.展开更多
Nano-and micro-particles are being increasingly used to tune interfacial frictional properties in diverse applications,from friction modifiers in industrial lubrication to enhanced biological fluids in human osteoarth...Nano-and micro-particles are being increasingly used to tune interfacial frictional properties in diverse applications,from friction modifiers in industrial lubrication to enhanced biological fluids in human osteoarthritic joints.Here,we assessed the tribological properties of a simulated synovial fluid enriched with non-spherical,poly lactic-co-glycolic acid(PLGA)microparticles(μPL)that have been previously demonstrated for the pharmacological management of osteoarthritis(OA).Three different μPL configurations were fabricated presenting a 20μm×20μm square base and a thickness of 5μm(thin,5H μPL),10μm(10H μPL),and 20μm(cubical,20H μPL).After extensive morphological and physicochemical characterizations,the apparent Young’s modulus of the μPL was quantified under compressive loading returning an average value of~6 kPa,independently of the particle morphology.Then,using a linear two-axis tribometer,the static(μ_(s))and dynamic(μ_(d))friction coefficients of the μPL-enriched simulated synovial fluid were determined in terms of particle configuration and concentration,varying from 0(fluid only)to 6×10^(5) μPL/mL.The particle morphology had a modest influence on friction,possibly because the μPL were fully squeezed between two mating surfaces by a 5.8 N normal load realizing boundary-like lubrication conditions.Differently,friction was observed to depend on the dimensionless parameterW,defined as the ratio between the total volume of the μPL enriching the simulated synovial fluid and the volume of the fluid itself.Both coefficients of friction were documented to grow withWreaching a plateau of μ_(s)~0.4 and μ_(d)~0.15,already at Ω~2×10^(-3).Future investigations will have to systematically analyze the effect of sliding velocity,normal load,and rigidity of the mating surfaces to elucidate in full the tribological behavior of μPL in the context of osteoarthritis.展开更多
The present study focuses on the relationship of hardness with grain size for commercially pure titanium (CpTi) and ultra fine grained titanium (UFG-Ti) produced by equal channel angular process (ECAP) of Cp-Ti...The present study focuses on the relationship of hardness with grain size for commercially pure titanium (CpTi) and ultra fine grained titanium (UFG-Ti) produced by equal channel angular process (ECAP) of Cp-Ti).Vickers and Knoop indentations of UFG-Ti at different loads was ~2.5 times harder than those of Cp-Ti.Xray diffraction (XRD) analysis showed peak broadening in UFG-Ti due to reduced grain size and micro-lattice strains.Scanning electron microscopy (SEM) revealed that ECAP had reduced the grain size of Cp-Ti by ~10 times.Weibull statistics showed UFG-Ti with lower dispersion in hardness values compare to Cp-Ti indicating a more uniform microstructure.展开更多
Wastes deriving from steel industry, containing large amounts of iron oxides and heavy metals, when collected in landfills are subjected to atmospheric agents, with consequent release of toxic substances in the soil a...Wastes deriving from steel industry, containing large amounts of iron oxides and heavy metals, when collected in landfills are subjected to atmospheric agents, with consequent release of toxic substances in the soil and groundwater. The reuse of these wastes as raw materials for the production of advanced materials is a viable way both to overcome the environmental impact and to reduce the disposal costs,proposing new technologically advanced materials. This work aims to simulate these interesting glassceramics by using glass cullet coming from recycled municipal waste and high amount of iron(III) oxide(from 25 wt% to 50 wt%), the prevalent component of steel waste. The oxide was mixed with glass cullet and vitrified. The samples composition and the microstructure were investigated by scanning electron microscopy(SEM), and X-ray diffraction(XRD) was used to evaluate the nature of the crystalline phases.The chemical stability of the materials, in terms of ionic release into saline solution, was assessed. The electrical behavior of the samples was also investigated by varying the iron ions content and controlling the crystallization process. It is possible to obtain chemically stable materials with a nearly semiconducting behavior.展开更多
Today colorectal cancer(CRC)is one of the leading causes of cancer death worldwide.This disease is poorly chemo-sensitive toward the existing medical treatments so that new and more effective therapeutic agents are ur...Today colorectal cancer(CRC)is one of the leading causes of cancer death worldwide.This disease is poorly chemo-sensitive toward the existing medical treatments so that new and more effective therapeutic agents are urgently needed and intensely sought.Platinum drugs,oxaliplatin in particular,were reported to produce some significant benefit in CRC treatment,triggering the general interest of medicinal chemists and oncologists for metal-based compounds as candidate anti-CRC drugs.Within this frame,gold compounds and,specifically,the established antiarthritic drug auranofin with its analogs,form a novel group of promising anticancer agents.Owing to its innovative mechanism of action and its favorable pharmacological profile,auranofin together with its derivatives are proposed here as novel experimental agents for CRC treatment,capable of overcoming resistance to platinum drugs.Some encouraging results in this direction have already been obtained.A few recent studies demonstrate that the action of auranofin may be further potentiated through the preparation of suitable pharmaceutical formulations capable of protecting the gold pharmacophore from unselective reactivity or through the design of highly synergic drug combinations.The perspectives of the research in this field are outlined.展开更多
The search for new fluorescent molecules for possible applications as functional p-electron systems and their conjugation with different nanomaterials is nowadays of paramount importance to broaden the availability of...The search for new fluorescent molecules for possible applications as functional p-electron systems and their conjugation with different nanomaterials is nowadays of paramount importance to broaden the availability of materials with different properties.Herein we present a diversity-oriented approach to heterocyclic luminophores based on a multicomponent Ugi reaction followed by a Pd-mediated cascade sequence.The new molecules are coupled to carbon nano-onions,and hybrid systems represent the first example of blue emitters conjugated with these carbon nanoparticles.展开更多
Aggregation-induced emission(AIE)luminogens are attractive dyes to probe poly-mer properties that depend on changes in chain mobility and free volume.When embedded in polymers the restriction of intramolecular motion(...Aggregation-induced emission(AIE)luminogens are attractive dyes to probe poly-mer properties that depend on changes in chain mobility and free volume.When embedded in polymers the restriction of intramolecular motion(RIM)can lead to their photoluminescence quantum yield(PLQY)strong enhancement if local microviscosity increases(lowering of chain mobility and free volume).Nonethe-less,measuring PLQY during stimuli,i.e.heat or mechanical stress,is technically challenging;thus,emission intensity is commonly used instead,assuming its direct correlation with the PLQY.Here,by usingfluorescence lifetime as an absolutefluorescence parameter,it is demonstrated that this assumption can be invalid in many commonly encountered conditions.To this aim,different poly-mers are loaded with tetraphenylenethylene(TPE)and characterized during the application of thermal and mechanical stress and physical aging.Under these con-ditions,polymer matrix transparency variation is observed,possibly due to local changes in refractive index and to the formation of microfractures.By combin-ing different characterization techniques,it is proved that scattering can affect the apparent emission intensity,while lifetime measurements can be used to ascertain whether the observed phenomenon is due to modifications of the photophysi-cal properties of AIE dyes(RIM effect)or to alterations in the matrix optical properties.展开更多
Eco-toxicity investigation of polymer materials was considered extremely necessary for their potential menace,which was widely use as mulching materials in agricultural.In this study,polyethylene(PE),polystyrene(PS)an...Eco-toxicity investigation of polymer materials was considered extremely necessary for their potential menace,which was widely use as mulching materials in agricultural.In this study,polyethylene(PE),polystyrene(PS)and synthetic biomaterials-Ecoflex and cellulose were applying into soil cultivated with two potential indicator plants species:oat(A v ena sati v a)and red radish(Raphanus sativum).Variety of chemical,biochemical parameters and enzyme activity in soil were proved as effective approach to evaluate polymers phytotoxicity in plant-soil mesocosm.The F-value of biomass,pH,heavy metal and electoral conductivity of Raphanus behaved significant different from T0.Significant analysis results indicated biodegradation was fast in PE than PS,besides,heavy metals were dramatically decrease in the end implied the plant absorption may help decrease heavy metal toxicity.The increase value at T2 of Dehydrogenase activity(0.84 higher than average value for Avena&0.91 higher for Raphanus),Metabolic Index(3.12 higher than average value for Avena&3.81 higher for Raphanus)means during soil enzyme activity was promoted by biodegradation for its heterotrophic organisms’energy transportation was stimulated.Statistics analysis was carried on Biplot PC1(24.2%of the total variance),PC2(23.2%of the total variance),versus PC3(22.8%of the total variance),which indicated phosphatase activity and metabolic index was significant correlated,and high correlation of ammonium and protease activity.Furthermore,the effects were more evident in Raphanus treatments than in Avena,suggesting the higher sensitivity of Raphanus to polymers treatment,which indicate biodegradation of polymers in Raphanus treatment has produced intermediate phytotoxic compounds.展开更多
Fluorinated block copolymers composed of a polystyrene(Sx) first block and a polyacrylate second block carrying hydrophobic/lipophobic perfluorohexyl side chains(AF) were prepared by atom transfer radical polymerizati...Fluorinated block copolymers composed of a polystyrene(Sx) first block and a polyacrylate second block carrying hydrophobic/lipophobic perfluorohexyl side chains(AF) were prepared by atom transfer radical polymerization(ATRP). Fluorescence emission properties were imparted to the copolymers by incorporation in the second block of a julolidine-based fluorescent molecular rotor(JCBF). The synthesized block copolymers were used as the fluorescent low-surface energy thin top-layer onto a polystyrene bottom-layer to produce novel two-layer film vapochromic sensors. Contact angle and X-ray photoelectron spectroscopy(XPS) measurements revealed that the two-layer film surfaces were hydrophobic and lipophobic at the same time and highly enriched in fluorine content as a result of the effective segregation of the perfluorinated tails to the polymer-air interface.The fluorescence intensity of the two-layer films decreased significantly when they were exposed to vapours of organic solvents,including tetrahydrofurane, chloroform, and trifluorotoluene. However, an AF content-dependent sensing behaviour was also observed, with the two-layer films containing the copolymer with the shorter fluorinated block giving a more rapid and almost quantitative decrease in fluorescence variation. Fluorescence emission of the films was also proved to vary with temperature.Both the vapochromic and thermochromic responses were reversible after successive solicitation cycles. The fluorescence variation of the two-layer films was much more marked than that of the corresponding PS/JCBF blend, thus providing a system potentially applicable as highly sensitive volatile organic compound(VOC) sensor, thanks to the active role of the fluorinated block in promoting the migration of the fluorophore to the outermost surface layers.展开更多
Introduction:Osun River dissecting the Osun-Osogbo Sacred Grove,though inscribed on the World Heritage List,has been rarely assessed for biodiversity values or ecotoxicology.In this study,we investigated the concentra...Introduction:Osun River dissecting the Osun-Osogbo Sacred Grove,though inscribed on the World Heritage List,has been rarely assessed for biodiversity values or ecotoxicology.In this study,we investigated the concentrations of Cu and Zn in the benthic sediments and two dominant gastropod species(Melanoides tuberculata and Lanistes varicus)of the Osun River.Benthic sediment and gastropod samples were collected on quarterly basis from June 2015 to March 2016 along the longitudinal stretch of the river.Dry samples were digested and analysed for Cu and Zn using the atomic absorption spectrophotometry.Results:With the exception of September sampling period,the two metals recorded higher values in the animals than in the sediments.Cu(1.23±0.81μg/g)was much lower(p<0.01)than zinc(6.29±2.15μg/g)in the benthic sediments.In the same vein,Cu was significantly lower(p<0.01)than Zn in both species.Both metals recorded much lower values than their average concentrations in the Earth’s crust as well as the recommended limits for freshwater life.Comparatively,L.varicus recorded higher bioaccumulation factor than M.tuberculata.Conclusions:Findings from this study suggest that both metals posed no toxicological risk to the freshwater system of Osun River.Concentrations of both metals in the sediments as well as their accumulation factors in both gastropod species were indicative of an unimpacted freshwater system.展开更多
Poly(butylene 2,6-naphthalate)(PBN)is a crystallizable linear polyester containing a rigid naphthalene unit and flexible methylene spacer in the chemical repeat unit.Polymeric materials made of PBN exhibit excellent a...Poly(butylene 2,6-naphthalate)(PBN)is a crystallizable linear polyester containing a rigid naphthalene unit and flexible methylene spacer in the chemical repeat unit.Polymeric materials made of PBN exhibit excellent anti-abrasion and low friction properties,superior chemical resista nee,and outstanding gas barrier characteristics.Many of the properties rely on the presence of crystals and the formatio n of a semicrystalline morphology.To develop specific crystal structures and morphologies during cooling the melt,precise information about the melt-crystallization process is required.This review article summarizes the current knowledge about the temperature-controlled crystal polymorphism of PBN.At rather low supercooling of the melt,with decreasi ng crystal I izatio n temperature,0'-and a-crystals grow directly from the melt and organize in largely different spherulitic superstructures.Formation of a-crystals at high supercooling may also proceed via intermediate formation of a transient monotropic liquid crystalline structure,then yielding a non-spherulitic semicrystalline morphology.Crystallization of PBN is rather fast since its suppression requires cooling the melt at a rate higher than 6000 K-s_1.For this reason,investigation of the two-step crystallization process at low temperatu res requires application of sophisticated experimental tools.These in elude temperatureresolved X-ray scattering techniques using fast detectors and synchrotron-based X-rays and fast scanning chip calorimetry.Fast scanning chip calorimetry allows freezi ng the transie nt liquid-crystalline structure before its con version into a-crystals,by fast cooling to below its glass transition temperature.Subsequent an alysis using polarized-light optical microscopy reveals its texture and X-ray scatteri ng con firms the smectic arrangement of the mesogens.The combination of a large variety of experimental techniques allows obtaining a complete picture about crystallization of PBN in the entire range of melt-supercoolings down to the glass transition,including quantitative data about the crystallization kinetics,semicrystalline morphologies at the micrometer length scale,as well as nanoscale X-ray structure information.展开更多
To address the energy challenges,scientists have designed various artificial light-harvesting systems inspired by photosynthesis.Notably,for light-harvesting systems,an energytransfer efficiency close to 100%with an a...To address the energy challenges,scientists have designed various artificial light-harvesting systems inspired by photosynthesis.Notably,for light-harvesting systems,an energytransfer efficiency close to 100%with an antenna effect greater than 10 is generally considered a good application criterion.[1]Today,building an efficient light-harvesting system at a low cost is still demanding.展开更多
This study examines the use of an aggregation-induced enhanced emission fluorophore(TPE-MRh)to prepare red-emitting luminescent solar concentrators(LSCs)based on poly(methyl methacrylate)(PMMA)and poly(cyclohexyl meth...This study examines the use of an aggregation-induced enhanced emission fluorophore(TPE-MRh)to prepare red-emitting luminescent solar concentrators(LSCs)based on poly(methyl methacrylate)(PMMA)and poly(cyclohexyl methacrylate)(PCMA).TPE-MRh is a tetraphenylethylene(TPE)derivative bearing two dimethylamino push groups and a 3-methyl-rhodanine pull moiety,with absorption maxima at around 500 nm and fluorescence peak at 700 nm that strongly increases in solid-state.TPE-MRh displays a typical crystallizationinduced enhanced emission that has been rationalized by modeling the compound behavior in solution and solid-state via density functional theory calculations with the inclusion of the environment.TPE-MRh dispersed into 5×5 cm2 polymer films with a thickness of 25±5μm has revealed a partial fluorescence quenching with fluorophore content.Quantum yields(QYs)below 10%for the 2 wt.%of doping have been addressed to the formation of less emissive micro-sized clusters of fluorophores.PMMA slabs with the same surface size but 3 mm of thickness and 200 ppm of TPE-MRh have provided QY of 36.5%thanks to the attenuation of the detrimental effects of fluorophore aggregation.This feature is reflected in the LSCs performance,with devices achieving the largest power collected by the photovoltaic cell.展开更多
基金the Natural Science Foundation of China,grant no.32071317
文摘The realization of a stable lithium-metal free(LiMF)sulfur battery based on amorphous carbon anode and lithium sulfide(Li_(2)S)cathode is here reported.In particular,a biomass waste originating full-cell combining a carbonized brewer's spent grain(CBSG)biochar anode with a Li_(2)S-graphene composite cathode(Li_(2)S70Gr30)is proposed.This design is particularly attractive for applying a cost-effective,high performance,environment friendly,and safe anode material,as an alternative to standard graphite and metallic lithium in emerging battery technologies.The anodic and cathodic materials are characterized in terms of structure,morphology and composition through X-ray diffraction,scanning and transmission electron microscopy,X-ray photoelectron and Raman spectroscopies.Furthermore,an electrochemical characterization comprising galvanostatic cycling,rate capability and cyclic voltammetry tests were carried out both in half-cell and full-cell configurations.The systematic investigation reveals that unlike graphite,the biochar electrode displays good compatibility with the electrolyte typically employed in sulfur batteries.The CBSG/Li_(2)S70Gr30 full-cell demonstrates an initial charge and discharge capacities of 726 and 537 mAh g^(-1),respectively,at 0.05C with a coulombic efficiency of 74%.Moreover,it discloses a reversible capacity of 330 mAh g^(-1)(0.1 C)after over 300 cycles.Based on these achievements,the CBSG/Li_(2)S70Gr30 battery system can be considered as a promising energy storage solution for electric vehicles(EVs),especially when taking into account its easy scalability to an industrial level.
基金supported by the Special Research Fund(BOF23PD03,P.Salimi)the Research Foundation Flanders(FWO SB-1S92022N,W.Vercruysse).
文摘Lithium-sulfur batteries are emerging as sustainable replacements for current lithium-ion batteries.The commercial viability of this novel type of battery is still under debate due to the extensive use of highly reactive lithium-metal anodes and the complex electrochemistry of the sulfur cathode.In this research,a novel sulfur-based battery has been proposed that eliminates the need for metallic lithium anodes and other critical raw materials like cobalt and graphite,replacing them with biomass-derived materials.This approach presents numerous benefits,encompassing ample availability,cost-effectiveness,safety,and environmental friendliness.In particular,two types of biochar-based anode electrodes(non-activated and activated biochar)derived from spent common ivy have been investigated as alternatives to metallic lithium.We compared their structural and electrochemical properties,both of which exhibited good compatibility with the typical electrolytes used in sulfur batteries.Surprisingly,while steam activation results in an increased specific surface area,the non-activated ivy biochar demonstrates better performance than the activated biochar,achieving a stable capacity of 400 mA h g^(−1)at 0.1 A g^(−1)and a long lifespan(>400 cycles at 0.5 A g^(−1)).Our results demonstrate that the presence of heteroatoms,such as oxygen and nitrogen positively affects the capacity and cycling performance of the electrodes.This led to increased d-spacing in the graphitic layer,a strong interaction with the solid electrolyte interphase layer,and improved ion transportation.Finally,the non-activated biochar was successfully coupled with a sulfur cathode to fabricate lithium-metal-free sulfur batteries,delivering a specific energy density of~600 Wh kg^(−1).
文摘Soil characterization and heavy metals in different layers (0 - 15 cm;15 - 30 cm and 30 - 45 cm depth) of automobile mechanic waste dumps were studied. The soils showed remarkably high levels of all the metals above background concentrations with most (Ni, Cu, Fe, Cr and Cd) decreasing with soil depth. The distribution pattern were in the following order Fe > Cu > Zn > Pb > Cr > Ni > Cd. Across all the sampling locations and profiles, Fe and Cd showed the highest (476.4 μg·g-1) and least (37.5 μg·g-1) mean concentrations respectively. Pollution load index (PLI) and index of geoaccumulation (Igeo) revealed overall high and moderate contamination respectively but the enrichment factors (EFs) for Pb Ni and Cd are severe. The inter-element relationship revealed the identical source of elements in the soils of the studied area. The accuracy of the results has been cheeked using the standard reference material;SRM (PACS-2). The mechanic waste dumps represent potential sources of heavy metal pollution to environment. The elevated levels of heavy metals in these soil profiles constitute a serious threat to both surface and groundwater.
基金financially supported by Compagnia di San Paolo, in the frame of the project COLEUS – ID ROL: 32604。
文摘An experimental investigation of the crystallographic,Raman and transport properties of the Ce_(1-x)(Nd_(0.74)Tm_(0.26))_xO_(2-x/2)(0.1≤x≤0.6) doped ceria system was performed with the aim of setting out correlations between structural features and ionic conductivity of the material.The chosen composition ensures that the average size of the Nd^(3+) and Tm^(3+) doping ions coincides with the one of Sm^(3+);even so,the studied system presents larger cell parameters and a wider compositional extent of the CeO_(2)-based solid solution than Sm-doped ceria.Moreover,the occurrence of two different activation energies to ionic conduction below and above ~750 K determines the existence of two distinct conduction regimes.The described experimental results agree with the formation below the threshold temperature of1 V_O2 Tm'_(Ce) trimers,which promote the incorporation of Nd'_(Ce) isolated defects into the CeO_(2)-based solid solution.In the high temperature range the dissociation of trimers induces the appearance of a lower activation energy;the extrapolation of its value at infinite dilution provides a result in good accordance with the expected binding energy of 1 V_ORE'_(Ce) dimers,pointing at their stability even in the high temperature conduction regime.
文摘Carissa edulis Vahl is well known in Sudanese herbal medicine,commonly used for treatment of epilepsy,headache,chest pains,rheumatism,skin lesions,mania and other psychoactive diseases.The investigations of the safety use for psychoactive purposes in Sudanese healing traditions and identifying secondary metabolites of the plant extracts are the key steps towards determination of appropriate medicinal doses.Therefore,one of the chemical constituents was isolated and structurally identified by 1H-NMR and LC-MS.With the aim of evaluating Carissa edulis folk random uses,the isolated compound was compared with reference artificial drugs Lormetazepam,a potentially toxic compound.Structure investigations confirm that the isolated product was benzodiazepines analogous 7-chloro 1,4-benzodiazepine-2-ones.It is important to know the potential toxicity of certain plant in order to assess the therapeutic effect of it,as these are slight distinctions between the medicinal and toxic doses.In general the results obtained justify the use of the roots of Carissa edulis in traditional medicine for the treatment of some psychiatric diseases.
文摘Here we report on the study of vertical alignment of a nematic liquid crystal due to the segregation between perfluorinated and the polysiloxane groups of a multi-component composite alignment material. The measured surface anchoring energy was found to depend on the relative amount of polysiloxane matrix in the composite material. These kind of self-assembly will reduce the preparation time for display by eliminating few steps.
文摘A detailed quantum mechanical analysis of electronic disposition of five aminopyrimidoisoquinolinequinones (APIQs) was performed after extraction of this subset of compounds from a larger data set of APIQs via a reported clustering methodology (Elfaki, et al. 2020). Both semi empirical PM3 method and DFT quantum mechanical methods were used to calculate global and local quantum mechanical descriptors (QMDs) to define the electronic environment of these molecules in attempt to rationalize their observed anti-cancer response variability. The biological response is the anticancer activity against human gastric adenocarcenoma (AGS) cell line. The correlation matrix between the calculated global electronic descriptors and biological activity demonstrated that the global dipole moment gives the highest correlation. The local electronic environment was analysed by The Mullikan charges (MC) and Fukui functions for N-5, C-6, C-8 in addition to the N atom of phenylamino side group at C-8. MCs furnished no useful information as each of these atoms had almost identical MC values for all the five compounds with exception of C-6 which gave varied values. Regressing MCs of C-6 against the response traces 60% of the latter variability. As C-6 is an extra annular methyl carbon adjacent to N-5 in isoquinoline residue of APIQ, we reasoned that the chemical reactivities of 4 out of the 5 APIQs might be due to a Chichibabin-type tautomerism implying a possible alkylation aspect in their mechanism of action. The corresponding Fukui functions (f<sup>-</sup>, f<sup>+</sup> and f<sup>0</sup>) showed a considerable consistency with the patterns of chemical reactivity exhibited by this small set of APIQs.
基金supported by the grant ARGE17-992/5/2 for PhD funded by the European Social Fund within the Liguria Regional operational programme 2014-2020-thematic objective“Education and training”.
文摘In recent years,hydrothermal treatment has been considered as among the most promising option for sludge solubilisation and carbon recovery in terms of sludge management.In this study,the effect of different individual hydrothermal operating conditions like temperature(110-250℃),sludge pH(6-13)and reaction time(0.5-3 h)were varied to understand their influence on sludge solubilisation.The most effective hydrothermal conditions(severity factor of 9.7)were found to be at 200℃,sludge pH of 12 and reaction time of 1 h which solubilised about 1743 mg/g and 131 mg/g of COD and carbohydrates respectively into the aqueous phase.Also,gas chromatography-mass spectrometry(GC-MS)analysis was done that identified the organic compounds in the treated liquid phase to be mainly carboxylic acids,phenols,esters,and their derivatives.Although further studies are required to efficiently separate and recover the different organic compounds present,this work provides more insights for future valorisation of the organic rich hydrothermally treated liquid phase.
文摘Nano-and micro-particles are being increasingly used to tune interfacial frictional properties in diverse applications,from friction modifiers in industrial lubrication to enhanced biological fluids in human osteoarthritic joints.Here,we assessed the tribological properties of a simulated synovial fluid enriched with non-spherical,poly lactic-co-glycolic acid(PLGA)microparticles(μPL)that have been previously demonstrated for the pharmacological management of osteoarthritis(OA).Three different μPL configurations were fabricated presenting a 20μm×20μm square base and a thickness of 5μm(thin,5H μPL),10μm(10H μPL),and 20μm(cubical,20H μPL).After extensive morphological and physicochemical characterizations,the apparent Young’s modulus of the μPL was quantified under compressive loading returning an average value of~6 kPa,independently of the particle morphology.Then,using a linear two-axis tribometer,the static(μ_(s))and dynamic(μ_(d))friction coefficients of the μPL-enriched simulated synovial fluid were determined in terms of particle configuration and concentration,varying from 0(fluid only)to 6×10^(5) μPL/mL.The particle morphology had a modest influence on friction,possibly because the μPL were fully squeezed between two mating surfaces by a 5.8 N normal load realizing boundary-like lubrication conditions.Differently,friction was observed to depend on the dimensionless parameterW,defined as the ratio between the total volume of the μPL enriching the simulated synovial fluid and the volume of the fluid itself.Both coefficients of friction were documented to grow withWreaching a plateau of μ_(s)~0.4 and μ_(d)~0.15,already at Ω~2×10^(-3).Future investigations will have to systematically analyze the effect of sliding velocity,normal load,and rigidity of the mating surfaces to elucidate in full the tribological behavior of μPL in the context of osteoarthritis.
文摘The present study focuses on the relationship of hardness with grain size for commercially pure titanium (CpTi) and ultra fine grained titanium (UFG-Ti) produced by equal channel angular process (ECAP) of Cp-Ti).Vickers and Knoop indentations of UFG-Ti at different loads was ~2.5 times harder than those of Cp-Ti.Xray diffraction (XRD) analysis showed peak broadening in UFG-Ti due to reduced grain size and micro-lattice strains.Scanning electron microscopy (SEM) revealed that ECAP had reduced the grain size of Cp-Ti by ~10 times.Weibull statistics showed UFG-Ti with lower dispersion in hardness values compare to Cp-Ti indicating a more uniform microstructure.
文摘Wastes deriving from steel industry, containing large amounts of iron oxides and heavy metals, when collected in landfills are subjected to atmospheric agents, with consequent release of toxic substances in the soil and groundwater. The reuse of these wastes as raw materials for the production of advanced materials is a viable way both to overcome the environmental impact and to reduce the disposal costs,proposing new technologically advanced materials. This work aims to simulate these interesting glassceramics by using glass cullet coming from recycled municipal waste and high amount of iron(III) oxide(from 25 wt% to 50 wt%), the prevalent component of steel waste. The oxide was mixed with glass cullet and vitrified. The samples composition and the microstructure were investigated by scanning electron microscopy(SEM), and X-ray diffraction(XRD) was used to evaluate the nature of the crystalline phases.The chemical stability of the materials, in terms of ionic release into saline solution, was assessed. The electrical behavior of the samples was also investigated by varying the iron ions content and controlling the crystallization process. It is possible to obtain chemically stable materials with a nearly semiconducting behavior.
基金funding the project“Advanced mass spectrometry tools for cancer research:novel applications in proteomics,metabolomics and nanomedicine”(Multi-user Equipment Program 2016,Ref.code 19650)the Beneficentia Stiftung,Vaduz(BEN2019/48 and University of Pisa(Rating Ateneo 2019-2020)for the financial support+1 种基金supported by the University of Pisa under the“PRA-Progetti di Ricerca di Ateneo”Institutional Research Grants-Project no.PRA_2020_58“Agenti innovativi e nanosistemi per target molecolari nell’ambito dell’oncologia di precisione”to Marzo Tthe financial support(two-year fellowship for Italy“Marcello e Rosina Soru”-Project Code:23852).
文摘Today colorectal cancer(CRC)is one of the leading causes of cancer death worldwide.This disease is poorly chemo-sensitive toward the existing medical treatments so that new and more effective therapeutic agents are urgently needed and intensely sought.Platinum drugs,oxaliplatin in particular,were reported to produce some significant benefit in CRC treatment,triggering the general interest of medicinal chemists and oncologists for metal-based compounds as candidate anti-CRC drugs.Within this frame,gold compounds and,specifically,the established antiarthritic drug auranofin with its analogs,form a novel group of promising anticancer agents.Owing to its innovative mechanism of action and its favorable pharmacological profile,auranofin together with its derivatives are proposed here as novel experimental agents for CRC treatment,capable of overcoming resistance to platinum drugs.Some encouraging results in this direction have already been obtained.A few recent studies demonstrate that the action of auranofin may be further potentiated through the preparation of suitable pharmaceutical formulations capable of protecting the gold pharmacophore from unselective reactivity or through the design of highly synergic drug combinations.The perspectives of the research in this field are outlined.
基金Istituto Italiano di Tecnologia and the University of Genova are gratefully acknowledged for financial supportthe COST Action CA 15107“Multi-Functional Nano-Carbon Composite Materials Network(MultiComp)”。
文摘The search for new fluorescent molecules for possible applications as functional p-electron systems and their conjugation with different nanomaterials is nowadays of paramount importance to broaden the availability of materials with different properties.Herein we present a diversity-oriented approach to heterocyclic luminophores based on a multicomponent Ugi reaction followed by a Pd-mediated cascade sequence.The new molecules are coupled to carbon nano-onions,and hybrid systems represent the first example of blue emitters conjugated with these carbon nanoparticles.
基金Ministero dell’Universitàe della Ricerca,Grant/Award Number:20179BJNA2。
文摘Aggregation-induced emission(AIE)luminogens are attractive dyes to probe poly-mer properties that depend on changes in chain mobility and free volume.When embedded in polymers the restriction of intramolecular motion(RIM)can lead to their photoluminescence quantum yield(PLQY)strong enhancement if local microviscosity increases(lowering of chain mobility and free volume).Nonethe-less,measuring PLQY during stimuli,i.e.heat or mechanical stress,is technically challenging;thus,emission intensity is commonly used instead,assuming its direct correlation with the PLQY.Here,by usingfluorescence lifetime as an absolutefluorescence parameter,it is demonstrated that this assumption can be invalid in many commonly encountered conditions.To this aim,different poly-mers are loaded with tetraphenylenethylene(TPE)and characterized during the application of thermal and mechanical stress and physical aging.Under these con-ditions,polymer matrix transparency variation is observed,possibly due to local changes in refractive index and to the formation of microfractures.By combin-ing different characterization techniques,it is proved that scattering can affect the apparent emission intensity,while lifetime measurements can be used to ascertain whether the observed phenomenon is due to modifications of the photophysi-cal properties of AIE dyes(RIM effect)or to alterations in the matrix optical properties.
基金supported by the National Natu-ral Science Foundation of China(Nos.4197071831,41630645,41573126 and 41703115)the National Special Environ-mental Protection Foundation for Technology Exploit of China(No.2014EG166135).
文摘Eco-toxicity investigation of polymer materials was considered extremely necessary for their potential menace,which was widely use as mulching materials in agricultural.In this study,polyethylene(PE),polystyrene(PS)and synthetic biomaterials-Ecoflex and cellulose were applying into soil cultivated with two potential indicator plants species:oat(A v ena sati v a)and red radish(Raphanus sativum).Variety of chemical,biochemical parameters and enzyme activity in soil were proved as effective approach to evaluate polymers phytotoxicity in plant-soil mesocosm.The F-value of biomass,pH,heavy metal and electoral conductivity of Raphanus behaved significant different from T0.Significant analysis results indicated biodegradation was fast in PE than PS,besides,heavy metals were dramatically decrease in the end implied the plant absorption may help decrease heavy metal toxicity.The increase value at T2 of Dehydrogenase activity(0.84 higher than average value for Avena&0.91 higher for Raphanus),Metabolic Index(3.12 higher than average value for Avena&3.81 higher for Raphanus)means during soil enzyme activity was promoted by biodegradation for its heterotrophic organisms’energy transportation was stimulated.Statistics analysis was carried on Biplot PC1(24.2%of the total variance),PC2(23.2%of the total variance),versus PC3(22.8%of the total variance),which indicated phosphatase activity and metabolic index was significant correlated,and high correlation of ammonium and protease activity.Furthermore,the effects were more evident in Raphanus treatments than in Avena,suggesting the higher sensitivity of Raphanus to polymers treatment,which indicate biodegradation of polymers in Raphanus treatment has produced intermediate phytotoxic compounds.
基金supported by the University of Pisa (fondi Progetti di Ricerca di Ateneo, PRA_2017_28)
文摘Fluorinated block copolymers composed of a polystyrene(Sx) first block and a polyacrylate second block carrying hydrophobic/lipophobic perfluorohexyl side chains(AF) were prepared by atom transfer radical polymerization(ATRP). Fluorescence emission properties were imparted to the copolymers by incorporation in the second block of a julolidine-based fluorescent molecular rotor(JCBF). The synthesized block copolymers were used as the fluorescent low-surface energy thin top-layer onto a polystyrene bottom-layer to produce novel two-layer film vapochromic sensors. Contact angle and X-ray photoelectron spectroscopy(XPS) measurements revealed that the two-layer film surfaces were hydrophobic and lipophobic at the same time and highly enriched in fluorine content as a result of the effective segregation of the perfluorinated tails to the polymer-air interface.The fluorescence intensity of the two-layer films decreased significantly when they were exposed to vapours of organic solvents,including tetrahydrofurane, chloroform, and trifluorotoluene. However, an AF content-dependent sensing behaviour was also observed, with the two-layer films containing the copolymer with the shorter fluorinated block giving a more rapid and almost quantitative decrease in fluorescence variation. Fluorescence emission of the films was also proved to vary with temperature.Both the vapochromic and thermochromic responses were reversible after successive solicitation cycles. The fluorescence variation of the two-layer films was much more marked than that of the corresponding PS/JCBF blend, thus providing a system potentially applicable as highly sensitive volatile organic compound(VOC) sensor, thanks to the active role of the fluorinated block in promoting the migration of the fluorophore to the outermost surface layers.
文摘Introduction:Osun River dissecting the Osun-Osogbo Sacred Grove,though inscribed on the World Heritage List,has been rarely assessed for biodiversity values or ecotoxicology.In this study,we investigated the concentrations of Cu and Zn in the benthic sediments and two dominant gastropod species(Melanoides tuberculata and Lanistes varicus)of the Osun River.Benthic sediment and gastropod samples were collected on quarterly basis from June 2015 to March 2016 along the longitudinal stretch of the river.Dry samples were digested and analysed for Cu and Zn using the atomic absorption spectrophotometry.Results:With the exception of September sampling period,the two metals recorded higher values in the animals than in the sediments.Cu(1.23±0.81μg/g)was much lower(p<0.01)than zinc(6.29±2.15μg/g)in the benthic sediments.In the same vein,Cu was significantly lower(p<0.01)than Zn in both species.Both metals recorded much lower values than their average concentrations in the Earth’s crust as well as the recommended limits for freshwater life.Comparatively,L.varicus recorded higher bioaccumulation factor than M.tuberculata.Conclusions:Findings from this study suggest that both metals posed no toxicological risk to the freshwater system of Osun River.Concentrations of both metals in the sediments as well as their accumulation factors in both gastropod species were indicative of an unimpacted freshwater system.
文摘Poly(butylene 2,6-naphthalate)(PBN)is a crystallizable linear polyester containing a rigid naphthalene unit and flexible methylene spacer in the chemical repeat unit.Polymeric materials made of PBN exhibit excellent anti-abrasion and low friction properties,superior chemical resista nee,and outstanding gas barrier characteristics.Many of the properties rely on the presence of crystals and the formatio n of a semicrystalline morphology.To develop specific crystal structures and morphologies during cooling the melt,precise information about the melt-crystallization process is required.This review article summarizes the current knowledge about the temperature-controlled crystal polymorphism of PBN.At rather low supercooling of the melt,with decreasi ng crystal I izatio n temperature,0'-and a-crystals grow directly from the melt and organize in largely different spherulitic superstructures.Formation of a-crystals at high supercooling may also proceed via intermediate formation of a transient monotropic liquid crystalline structure,then yielding a non-spherulitic semicrystalline morphology.Crystallization of PBN is rather fast since its suppression requires cooling the melt at a rate higher than 6000 K-s_1.For this reason,investigation of the two-step crystallization process at low temperatu res requires application of sophisticated experimental tools.These in elude temperatureresolved X-ray scattering techniques using fast detectors and synchrotron-based X-rays and fast scanning chip calorimetry.Fast scanning chip calorimetry allows freezi ng the transie nt liquid-crystalline structure before its con version into a-crystals,by fast cooling to below its glass transition temperature.Subsequent an alysis using polarized-light optical microscopy reveals its texture and X-ray scatteri ng con firms the smectic arrangement of the mesogens.The combination of a large variety of experimental techniques allows obtaining a complete picture about crystallization of PBN in the entire range of melt-supercoolings down to the glass transition,including quantitative data about the crystallization kinetics,semicrystalline morphologies at the micrometer length scale,as well as nanoscale X-ray structure information.
文摘To address the energy challenges,scientists have designed various artificial light-harvesting systems inspired by photosynthesis.Notably,for light-harvesting systems,an energytransfer efficiency close to 100%with an antenna effect greater than 10 is generally considered a good application criterion.[1]Today,building an efficient light-harvesting system at a low cost is still demanding.
基金MIUR-PRIN,Grant/Award Number:20179BJNA2European Union’s Horizon 2020 Research and Innovation Program,Grant/Award Number:648558China Scholarship Council,Grant/Award Number:202006890004。
文摘This study examines the use of an aggregation-induced enhanced emission fluorophore(TPE-MRh)to prepare red-emitting luminescent solar concentrators(LSCs)based on poly(methyl methacrylate)(PMMA)and poly(cyclohexyl methacrylate)(PCMA).TPE-MRh is a tetraphenylethylene(TPE)derivative bearing two dimethylamino push groups and a 3-methyl-rhodanine pull moiety,with absorption maxima at around 500 nm and fluorescence peak at 700 nm that strongly increases in solid-state.TPE-MRh displays a typical crystallizationinduced enhanced emission that has been rationalized by modeling the compound behavior in solution and solid-state via density functional theory calculations with the inclusion of the environment.TPE-MRh dispersed into 5×5 cm2 polymer films with a thickness of 25±5μm has revealed a partial fluorescence quenching with fluorophore content.Quantum yields(QYs)below 10%for the 2 wt.%of doping have been addressed to the formation of less emissive micro-sized clusters of fluorophores.PMMA slabs with the same surface size but 3 mm of thickness and 200 ppm of TPE-MRh have provided QY of 36.5%thanks to the attenuation of the detrimental effects of fluorophore aggregation.This feature is reflected in the LSCs performance,with devices achieving the largest power collected by the photovoltaic cell.