期刊文献+
共找到1,933篇文章
< 1 2 97 >
每页显示 20 50 100
Tensile strength and failure behavior of rock-mortar interfaces: Direct and indirect measurements
1
作者 Ghasem Shams Patrice Rivard Omid Moradian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期41-55,共15页
The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism... The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces,understanding of these factors remains very limited.This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings.Digital image correlation(DIC)and acoustic emission(AE)techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading(Brazilian tests).The results indicated that the direct tensile strength of the rock-mortar specimens was lower than their indirect tensile strength,with a direct/indirect tensile strength ratio of 65%.DIC strain field data and moment tensor inversions(MTI)of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test.The presence of these shear microcracks,which require more energy to break,resulted in a higher tensile strength during the Brazilian tests.In contrast,microcracks were predominantly tensile in specimens subjected to direct tension,leading to a lower tensile strength.Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test,whereas they show a minimal number of AE events before failure under direct tension.Due to different microcracking mechanisms,specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces.The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures. 展开更多
关键词 Rock-mortar Rock-concrete Moment tensor inversion(MTI) Acoustic emission(AE) Digital image correlation(DIC) Tensile strength Direct tensile test Brazilian test
下载PDF
Evaluation of slope stability through rock mass classification and kinematic analysis of some major slopes along NH-1A from Ramban to Banihal, North Western Himalayas
2
作者 Amit Jaiswal A.K.Verma T.N.Singh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期167-182,共16页
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil... The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road. 展开更多
关键词 Rock mass classification Kinematic analysis Slope stability Himalayan road Static and dynamic conditions
下载PDF
Surface wave inversion with unknown number of soil layers based on a hybrid learning procedure of deep learning and genetic algorithm
3
作者 Zan Zhou Thomas Man-Hoi Lok Wan-Huan Zhou 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期345-358,共14页
Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known bef... Surface wave inversion is a key step in the application of surface waves to soil velocity profiling.Currently,a common practice for the process of inversion is that the number of soil layers is assumed to be known before using heuristic search algorithms to compute the shear wave velocity profile or the number of soil layers is considered as an optimization variable.However,an improper selection of the number of layers may lead to an incorrect shear wave velocity profile.In this study,a deep learning and genetic algorithm hybrid learning procedure is proposed to perform the surface wave inversion without the need to assume the number of soil layers.First,a deep neural network is adapted to learn from a large number of synthetic dispersion curves for inferring the layer number.Then,the shear-wave velocity profile is determined by a genetic algorithm with the known layer number.By applying this procedure to both simulated and real-world cases,the results indicate that the proposed method is reliable and efficient for surface wave inversion. 展开更多
关键词 surface wave inversion analysis shear-wave velocity profile deep neural network genetic algorithm
下载PDF
Topographic seismic effects and avalanche hazard:A case study of Mount Siella(L’Aquila,Central Italy)
4
作者 Ferdinando TOTANI 《Journal of Mountain Science》 SCIE CSCD 2024年第2期662-675,共14页
In mountainous areas,snow avalanches could be triggered by the shaking produced by earthquakes.The forces induced by the earthquake can cause an irregular increase of shear strength load down the slope,for the presenc... In mountainous areas,snow avalanches could be triggered by the shaking produced by earthquakes.The forces induced by the earthquake can cause an irregular increase of shear strength load down the slope,for the presence of complex surface and buried morphologies.Topographic irregularities generate maximum effects of waves amplification linked to wavelengths comparable to the horizontal dimension of the topographic feature.For this reason,the selected time-histories represent an appropriate input for the two-dimensional numerical response analyses when a dynamic phenomenon produce the resonant motion of a whole mountain.This represents an important earthquake-induced hazard in snow-covered mountain areas with high probability of seismic events.Some valleys are located in regions with scare ground motion data and investments on infrastructures are not always accompanied by adequate protection against earthquake-induced avalanches.The paper points out a simple deterministic approach for selecting a set of real accelerograms applied to a real case of Siella Mountain(Central Italy)where a large avalanche destroying a tourist facility of Rigopiano resort on 18 January 2017.The selected time histories were used as input for the two-dimensional numerical model of the subsoil to evaluate the topographic seismic amplification in ridge and compare it with the results of other authors.These methods suggest that morphology-related inertial effects should be considered as an overload action on snow layers when controlling multi-hazard studies and spatial planning. 展开更多
关键词 Real accelerograms selection Deterministic approach Topographic amplification Avalanche induced by earthquake 2D seismic response.
原文传递
Dynamics and vibration reduction performance of asymmetric tristable nonlinear energy sink
5
作者 Hongyan CHEN Youcheng ZENG +2 位作者 Hu DING Siukai LAI Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第3期389-406,共18页
With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymm... With its complex nonlinear dynamic behavior,the tristable system has shown excellent performance in areas such as energy harvesting and vibration suppression,and has attracted a lot of attention.In this paper,an asymmetric tristable design is proposed to improve the vibration suppression efficiency of nonlinear energy sinks(NESs)for the first time.The proposed asymmetric tristable NES(ATNES)is composed of a pair of oblique springs and a vertical spring.Then,the three stable states,symmetric and asymmetric,can be achieved by the adjustment of the distance and stiffness asymmetry of the oblique springs.The governing equations of a linear oscillator(LO)coupled with the ATNES are derived.The approximate analytical solution to the coupled system is obtained by the harmonic balance method(HBM)and verified numerically.The vibration suppression efficiency of three types of ATNES is compared.The results show that the asymmetric design can improve the efficiency of vibration reduction through comparing the chaotic motion of the NES oscillator between asymmetric steady states.In addition,compared with the symmetrical tristable NES(TNES),the ATNES can effectively control smaller structural vibrations.In other words,the ATNES can effectively solve the threshold problem of TNES failure to weak excitation.Therefore,this paper reveals the vibration reduction mechanism of the ATNES,and provides a pathway to expand the effective excitation amplitude range of the NES. 展开更多
关键词 ASYMMETRIC nonlinear energy sink(NES) tristable vibration control po-tential barrier
下载PDF
Analytical evaluation of steady-state solute distribution in through- diffusion and membrane behavior test under non-perfectly flushing boundary conditions
6
作者 Guannian Chen Yuchao Li +1 位作者 Kristin MSample-Lord Shan Tong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期258-267,共10页
The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-... The through-diffusion and membrane behavior testing procedure using a closed-system apparatus has been widely used for concurrent measurement of diffusion and membrane efficiency coefficients of low-permeability clay-based barrier materials.However,the common assumption of perfectly flushing conditions at the specimen boundaries could induce errors in analyses of the diffusion coefficients and membrane efficiencies.In this study,an innovative pseudo three-dimensional(3D)analytical method was proposed to evaluate solute distribution along the boundary surfaces of the soil-porous disks system,considering the non-perfectly flushing conditions.The results were consistent with numerical models under two scenarios considering different inflow/outflow positions.The proposed model has been demonstrated to be an accurate and reliable method to estimate solute distributions along the bound-aries.The calculated membrane efficiency coefficient and diffusion coefficient based on the proposed analytical method are more accurate,resulting in up to 50%less relative error than the traditional approach that adopts the arithmetic mean value of the influent and effluent concentrations.The retar-dation factor of the clay specimen also can be calculated with a revised cumulative mass approach.Finally,the simulated transient solute transport matched with experimental data from a multi-stage through-diffusion and membrane behavior test,validating the accuracy of the proposed method. 展开更多
关键词 Diffusion testing Membrane behavior Coupled transport Clay barrier Transport modeling
下载PDF
Experimental study on workability and permeability of sandy soils conditioned with thickened foam
7
作者 Zhiyao Feng Shuying Wang +2 位作者 Tongming Qu Xiangcou Zheng Fanlin Ling 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期532-544,共13页
Water spewing and muck plugging often occur during earth pressure balance(EPB)shield machines tunnelling in water-rich sandy strata,even though the conventional foam has been employed to condition sandy soils.In this ... Water spewing and muck plugging often occur during earth pressure balance(EPB)shield machines tunnelling in water-rich sandy strata,even though the conventional foam has been employed to condition sandy soils.In this study,a novel thickened foaming agent suitable for EPB shield tunnelling in water-rich sandy strata is developed.In contrast to conventional foam-conditioned sands,the thickened foam-conditioned sand has a low permeability due to the consistent filling of soil pores with the thickened foam,and the initial permeability coefficient decreases by approximately two orders of magnitude.It also exhibits a suitable workability,which is attributed to the enhanced capability of the thickened foam to condition sandy soils.In addition,the effect of concentration on the stability of the foam is explained by the Gibbs-Marangoni effect,and conditioning mechanisms for the thickened foam on sands are discussed from the evolution of foam bubbles. 展开更多
关键词 Earth pressure balance(EPB)shield Thickened foam Foam-conditioned sand PERMEABILITY WORKABILITY
下载PDF
Spatiotemporal variations of sand hydraulic conductivity by microbial application methods
8
作者 Viroon Kamchoom Thiti Khattiwong +2 位作者 Treesukon Treebupachatsakul Suraparb Keawsawasvong Anthony Kwan Leung 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期268-278,共11页
The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prep... The spatiotemporal distributions of microbes in soil by different methods could affect the efficacy of the microbes to reduce the soil hydraulic conductivity.In this study,the specimens of bio-mediated sands were prepared using three different methods,i.e.injecting,mixing,and pouring a given microbial so-lution onto compacted sand specimens.The hydraulic conductivity was measured by constant-head tests,while any soil microstructural changes due to addition of the microbes were observed by scan-ning electron microscope(SEM)and mercury intrusion porosimetry(MIP)tests.The amount of dextran concentration produced by microbes in each type of specimen was quantified by a refractometer.Results show that dextran production increased exponentially after 5-7 d of microbial settling with the supply of culture medium.The injection and mixing methods resulted in a similar amount and uniform dis-tribution of dextran in the specimens.The pouring method,however,produced a nonuniform distri-bution,with a higher concentration near the specimen surface.As the supply of culture medium discontinued,the dextran content near the surface produced by the pouring method decreased dramatically due to high competition for nutrients with foreign colonies.Average dextran concentration was negatively and correlated with hydraulic conductivity of bio-mediated soils exponentially,due to the clogging of large soil pores by dextran.The hydraulic conductivity of the injection and mixing cases did not change significantly when the supply of culture medium was absent. 展开更多
关键词 Bio-mediated soil DEXTRAN Hydraulic conductivity Leuconostoc mesenteroides Microbial application MICROSTRUCTURE
下载PDF
Prediction of Damping Capacity Demand in Seismic Base Isolators via Machine Learning
9
作者 Ayla Ocak Umit Isıkdag +3 位作者 Gebrail Bekdas Sinan Melih Nigdeli Sanghun Kim ZongWoo Geem 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2899-2924,共26页
Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effe... Base isolators used in buildings provide both a good acceleration reduction and structural vibration control structures.The base isolators may lose their damping capacity over time due to environmental or dynamic effects.This deterioration of them requires the determination of the maintenance and repair needs and is important for the long-termisolator life.In this study,an artificial intelligence prediction model has been developed to determine the damage and maintenance-repair requirements of isolators as a result of environmental effects and dynamic factors over time.With the developed model,the required damping capacity of the isolator structure was estimated and compared with the previously placed isolator capacity,and the decrease in the damping property was tried to be determined.For this purpose,a data set was created by collecting the behavior of structures with single degrees of freedom(SDOF),different stiffness,damping ratio and natural period isolated from the foundation under far fault earthquakes.The data is divided into 5 different damping classes varying between 10%and 50%.Machine learning model was trained in damping classes with the data on the structure’s response to random seismic vibrations.As a result of the isolator behavior under randomly selected earthquakes,the recorded motion and structural acceleration of the structure against any seismic vibration were examined,and the decrease in the damping capacity was estimated on a class basis.The performance loss of the isolators,which are separated according to their damping properties,has been tried to be determined,and the reductions in the amounts to be taken into account have been determined by class.In the developed prediction model,using various supervised machine learning classification algorithms,the classification algorithm providing the highest precision for the model has been decided.When the results are examined,it has been determined that the damping of the isolator structure with the machine learning method is predicted successfully at a level exceeding 96%,and it is an effective method in deciding whether there is a decrease in the damping capacity. 展开更多
关键词 Vibration control base isolation machine learning damping capacity
下载PDF
Long-term performance of recycled asphalt mixtures containing high RAP and RAS
10
作者 Jiangmiao Yu Zengyao Lin +3 位作者 Guilian Zou Huayang Yu Zhen Leng Yuan Zhang 《Journal of Road Engineering》 2024年第1期36-53,共18页
The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents ... The application of reclaimed asphalt pavement(RAP)and reclaimed asphalt shingles(RAS)on asphalt pavement can reduce the asphalt paving cost,conserve energy and protect the environment.However,the use of high contents of RAP and RAS in asphalt pavement may lead to durability issues,especially the fatigue cracking and thermal cracking.It is necessary to conduct a series of analyses on asphalt mixtures containing high RAP and RAS,and seek methods to enhance their long-term performance.This paper provides a comprehensive over-view of the long-term performance of recycled asphalt mixtures containing high contents of RAP and RAS.The findings in this research show that rutting resistance of high recycled asphalt mixtures is not a concern,whereas their resistance to fatigue and thermal cracking is not conclusive.Recycling agents can be used to improve the thermal cracking resistance of high recycled asphalt mixtures.An optimum decision on recycling agents will improve the durability properties of high recycled asphalt mixtures.It is recommended that to use a balanced mixture design approach with testing of the blended asphalt binders will provide better understanding of long-term performance of recycled asphalt mixtures containing high RAP and RAS. 展开更多
关键词 Recycled asphalt mixture Recycling agents Long-term performance CRACKING
下载PDF
Undrained vane shear strength of sand-foam mixtures subjected to different shear rates 被引量:2
11
作者 Jiazheng Zhong Shuying Wang Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1591-1602,共12页
The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conv... The shear strength of sand-foam mixtures plays a crucial role in ensuring successful earth pressure balance(EPB)shield tunneling.Since the sand-foam mixtures are constantly sheared by the cutterhead and the screw conveyor with varied rotation speeds during tunneling,it is non-trivial to investigate the effect of shear rates on the undrained shear strength of sand-foam mixtures under chamber pressures to extend the understanding on the tunneling process.This study conducted a series of pressurized vane shear tests to investigate the role of shear rates on the peak and residual strengths of sand-foam mixtures at different pore states.Different from the shear-rate characteristics of natural sands or clay,the results showed that the peak strength of sand-foam mixtures under high vertical total stress(σ_(v)≥200 kPa)and low foam injection ratio(FIR30%)decreased with the increase in shear rate.Otherwise,the peak strength was not measurably affected by shear rates.The sand-foam mixtures in the residual state resembled low-viscous fluid with yield stress and the residual strength increased slightly with shear rates.In addition,the peak and residual strengths were approximately linear with vertical effective stress regardless of the total stress and FIR.The peak effective internal friction angle remained almost invariant in a low shear rate(γ′<0.25 s1)but decreased when the shear rate continued increasing.The residual effective internal friction angle was lower than the peak counterpart and insensitive to shear rates.This study unveiled the role of shear rates in the undrained shear strength of sand-foam mixtures with various FIRs and vertical total stresses.The findings can extend the understanding of the rate-dependent shear characteristics of conditioned soils and guide the decision-making of soil conditioning schemes in the EPB shield tunneling practice. 展开更多
关键词 Sand-foam mixture Shear rate Peak and residual strengths Effective stress Effective internal friction angle
下载PDF
Microplastic pollution and enrichment of distinct microbiota in sediment of mangrove in Zhujiang River estuary,China 被引量:1
12
作者 Muting YAN Xiaofeng CHEN +4 位作者 Wei CHU Weixin LI Minqian LI Zeming CAI Han GONG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第1期215-228,共14页
The microbial communities colonized on microplastics(MPs)have attracted widespread attention.However,few studies focused on the MPs impacts on mangrove ecosystems,particularly on bacterial communities.We investigated ... The microbial communities colonized on microplastics(MPs)have attracted widespread attention.However,few studies focused on the MPs impacts on mangrove ecosystems,particularly on bacterial communities.We investigated the MPs pollution in mangrove of Zhujiang(Pearl)River estuary(ZRE).To study the potential risk posed by MPs to the mangrove ecosystems,the differences in bacterial communities,functions,and complexity between MPs and sediment samples were reported for the first time.Microplastics(2991±1586 items/kg dry weight(dw))in sediment were mainly fibers and polyethylene,mostly transparent,and in size less than 0.5 mm.Bacterial communities and functions significantly differed from MPs in mangrove sediment.Compared with sediment,MPs significantly enriched members of Proteobacteria,Bacteroidetes,and Actinobacteria,as well as the bacteria associated with plastic-degrading and human diseases on their surface,suggesting that microbial communities on MPs may promote MPs degradation and the spread of diseases,posing potential risk to mangrove ecosystems and human health.Although bacteria on MPs exhibited a lower diversity,the co-occurrence network analysis indicated that network of bacteria colonized on MPs was bigger and more complex than those of mangrove sediment,illustrating that MPs can act as a distinct habitat in this special ecosystem.This study provides a new perspective for increasing our understanding of microplastic pollution in mangrove ecosystems. 展开更多
关键词 microplastic(MP) mangrove sediment microbial community bacterial function co-occurrence network
下载PDF
An Improved Bald Eagle Search Algorithm with Cauchy Mutation and Adaptive Weight Factor for Engineering Optimization 被引量:1
13
作者 Wenchuan Wang Weican Tian +3 位作者 Kwok-wing Chau Yiming Xue Lei Xu Hongfei Zang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1603-1642,共40页
The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search sta... The Bald Eagle Search algorithm(BES)is an emerging meta-heuristic algorithm.The algorithm simulates the hunting behavior of eagles,and obtains an optimal solution through three stages,namely selection stage,search stage and swooping stage.However,BES tends to drop-in local optimization and the maximum value of search space needs to be improved.To fill this research gap,we propose an improved bald eagle algorithm(CABES)that integrates Cauchy mutation and adaptive optimization to improve the performance of BES from local optima.Firstly,CABES introduces the Cauchy mutation strategy to adjust the step size of the selection stage,to select a better search range.Secondly,in the search stage,CABES updates the search position update formula by an adaptive weight factor to further promote the local optimization capability of BES.To verify the performance of CABES,the benchmark function of CEC2017 is used to simulate the algorithm.The findings of the tests are compared to those of the Particle Swarm Optimization algorithm(PSO),Whale Optimization Algorithm(WOA)and Archimedes Algorithm(AOA).The experimental results show that CABES can provide good exploration and development capabilities,and it has strong competitiveness in testing algorithms.Finally,CABES is applied to four constrained engineering problems and a groundwater engineeringmodel,which further verifies the effectiveness and efficiency of CABES in practical engineering problems. 展开更多
关键词 Bald eagle search algorithm cauchymutation adaptive weight factor CEC2017 benchmark functions engineering optimization problems
下载PDF
Use and application of CFC-11,CFC-12,CFC-113 and SF6 as environmental tracers of groundwater residence time:A review 被引量:6
14
作者 L.A. Chambers D.C. Gooddy A.M. Binley 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第5期1643-1652,共10页
Groundwater residence time is a fundamental property of groundwater to understand important hydrogeological issues,such as deriving sustainable abstraction volumes,or,the evolution of groundwater quality.The anthropog... Groundwater residence time is a fundamental property of groundwater to understand important hydrogeological issues,such as deriving sustainable abstraction volumes,or,the evolution of groundwater quality.The anthropogenic trace gases chlorofluorocarbons (CFC-11,CFC-12 and CFC-113) and sulphur hexafluoride (SF6) are ideal in this regard because they have been released globally at known rates and become dissolved in groundwater following Henry’s Law,integrating over large spatial (global) and temporal (decades) scales.The CFCs and SF6 are able to date groundwater up to w100 years old with the caveat of certain simplifying assumptions.However,the inversion of environmental tracer concentrations (CFCs and SF6) to derive groundwater age rests on the accurate determination of groundwater recharge parameters,namely temperature,elevation,salinity and excess air,in addition to resolving the potential for contamination,degradation and unsaturated zone effects.This review explores the fundamentals of CFC-11,CFC-12,CFC-113 and SF6 as environmental tracers of groundwater age and recommends complementary techniques throughout.Once this relatively simple and inexpensive technique has been used to determine initial concentrations at the recharge zone,setting the groundwater dating ‘clock’ to zero,this review then explores the meaning of groundwater ‘age’ in relation to measured environmental tracer concentrations.It is shown that the CFCs and SF6 may be applied to a wide-range of hydrogeological problems and suggests that environmental tracers are particularly powerful tools when integrated with numerical flow and transport models. 展开更多
关键词 HYDROGEOLOGY Environmental tracers GROUNDWATER DATING
下载PDF
Sustainable Practice in Pavement Engineering through Value-Added Collective Recycling of Waste Plastic and Waste Tyre Rubber 被引量:7
15
作者 Xiong Xu Zhen Leng +5 位作者 Jingting Lan Wei Wang Jiangmiao Yu Yawei Bai Anand Sreeram Jing Hu 《Engineering》 SCIE EI 2021年第6期857-867,共11页
Waste plastics,such as waste polyethylene terephthalate(PET)beverage bottles and waste rubber tyres are major municipal solid wastes,which may lead to various environmental problems if they are not appropriately recyc... Waste plastics,such as waste polyethylene terephthalate(PET)beverage bottles and waste rubber tyres are major municipal solid wastes,which may lead to various environmental problems if they are not appropriately recycled.In this study,the feasibility of collectively recycling the two types of waste into performance-increasing modifiers for asphalt pavements was analyzed.This study aimed to investigate the recycling mechanisms of waste PET-derived additives under the treatment of two amines,triethylenetetramine(TETA)and ethanolamine(EA),and characterize the performances of these additives in modifying rubberized bitumen,a bitumen modified by waste tyre rubber.To this end,infrared spectroscopy and thermal analyses were carried out on the two PET-derived additives(PET–TETA and PET–EA).In addition,infrared spectroscopy,viscosity,dynamic shear rheology,and multiple stress creep recovery tests were performed on the rubberized bitumen samples modified by the two PET-derived additives.We concluded that waste PET can be chemically upcycled into functional additives,which can increase the overall performance of the rubberized bitumen.The recycling method developed in this study not only helps alleviate the landfilling problems of both waste PET plastic and scrap tyres,but also turns these wastes into value-added new materials for building durable pavements. 展开更多
关键词 Waste polyethylene terephthalate Waste tyre rubber Rubberized bitumen Recycling mechanism Sustainability
下载PDF
Thermal integrity profiling of cast-in-situ piles in sand using fiber-optic distributed temperature sensing
16
作者 Jing Wang Honghu Zhu +4 位作者 Daoyuan Tan Zili Li Jie Li Chao Wei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3244-3255,共12页
Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature ... Defects in cast-in-situ piles have an adverse impact on load transfer at the pile‒soil interface and pile bearing capacity. In recent years, thermal integrity profiling (TIP) has been developed to measure temperature profiles of cast-in-situ piles, enabling the detection of structural defects or anomalies at the early stage of construction. However, using this integrity testing method to evaluate potential defects in cast-in-situ piles requires a comprehensive understanding of the mechanism of hydration heat transfer from piles to surrounding soils. In this study, small-scale model tests were conducted in laboratory to investigate the performance of TIP in detecting pile integrity. Fiber-optic distributed temperature sensing (DTS) technology was used to monitor detailed temperature variations along model piles in sand. Additionally, sensors were installed in sand to measure water content and matric suction. An interpretation method against available DTS-based thermal profiles was proposed to reveal the potential defective regions. It shows that the temperature difference between normal and defective piles is more obvious in wet sand. In addition, there is a critical zone of water migration in sand due to the water absorption behavior of cement and temperature transfer-induced water migration in the early-age concrete setting. These findings could provide important insight into the improvement of the TIP testing method for field applications. 展开更多
关键词 Geotechnical monitoring Distributed temperature sensing(DTS) Pile defect Fiber-optic thermal integrity profiling(FO-TIP) Heat transfer Pile‒soil interface
下载PDF
Defect inspection of indoor components in buildings using deep learning object detection and augmented reality
17
作者 Shun-Hsiang Hsu Ho-Tin Hung +1 位作者 Yu-Qi Lin Chia-Ming Chang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第1期41-54,共14页
Visual inspection is commonly adopted for building operation,maintenance,and safety.The durability and defects of components or materials in buildings can be quickly assessed through visual inspection.However,implemen... Visual inspection is commonly adopted for building operation,maintenance,and safety.The durability and defects of components or materials in buildings can be quickly assessed through visual inspection.However,implementations of visual inspection are substantially time-consuming,labor-intensive,and error-prone because useful auxiliary tools that can instantly highlight defects or damage locations from images are not available.Therefore,an advanced building inspection framework is developed and implemented with augmented reality(AR)and real-time damage detection in this study.In this framework,engineers should walk around and film every corner of the building interior to generate the three-dimensional(3D)environment through ARKit.Meanwhile,a trained YOLOv5 model real-time detects defects during this process,even in a large-scale field,and the defect locations indicating the detected defects are then marked in this 3D environment.The defects areas can be measured with centimeter-level accuracy with the light detection and ranging(LiDAR)on devices.All required damage information,including defect positions and sizes,is collected at a time and can be rendered in the 2D and 3D views.Finally,this visual inspection can be efficiently conducted,and the previously generated environment can also be loaded to re-localize existing defect marks for future maintenance and change observation.Moreover,the proposed framework is also implemented and verified by an underground parking lot in a building to detect and quantify surface defects on concrete components.As seen in the results,the conventional building inspection is significantly improved with the aid of the proposed framework in terms of damage localization,damage quantification,and inspection efficiency. 展开更多
关键词 visual inspection damage detection augmented reality damage quantification deep learning
下载PDF
Moment tensor and stress inversion solutions of acoustic emissions during compression and tensile fracturing in crystalline rocks
18
作者 Zihua Niu Bing Qiuyi Li Omid Moradian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2778-2786,共9页
We investigate the accuracy and robustness of moment tensor(MT)and stress inversion solutions derived from acoustic emissions(AEs)during the laboratory fracturing of prismatic Barre granite specimens.Pre-cut flaws in ... We investigate the accuracy and robustness of moment tensor(MT)and stress inversion solutions derived from acoustic emissions(AEs)during the laboratory fracturing of prismatic Barre granite specimens.Pre-cut flaws in the specimens introduce a complex stress field,resulting in a spatial and temporal variation of focal mechanisms.Specifically,we consider two experimental setups:(1)where the rock is loaded in compression to generate primarily shear-type fractures and(2)where the material is loaded in indirect tension to generate predominantly tensile-type fractures.In each test,we first decompose AE moment tensors into double-couple(DC)and non-DC terms and then derive unambiguous normal and slip vectors using k-means clustering and an unstructured damped stress inversion algorithm.We explore temporal and spatial distributions of DC and non-DC events at different loading levels.The majority of the DC and the tensile non-DC events cluster around the pre-cut flaws,where macro-cracks later develop.Results of stress inversion are verified against the stress field from finite element(FE)modeling.A good agreement is found between the experimentally derived and numerically simulated stress orientations.To the best of the authors’knowledge,this work presents the first case where stress inversion methodologies are validated by numerical simulations at laboratory scale and under highly heterogeneous stress distributions. 展开更多
关键词 Induced seismicity Acoustic emission(AE) Moment tensor(MT)inversion Stress inversion Finite element(FE)modeling
下载PDF
Experimental investigation and flow analysis of clear-water scour around pier and abutment in proximity
19
作者 Mohammad Saeed Fakhimjoo Abdollah Ardeshir +1 位作者 Kourosh Behzadian Hojat Karami 《Water Science and Engineering》 EI CAS CSCD 2023年第1期94-105,共12页
Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the ... Local scour around bridge piers and abutments is one of the most significant causes of bridge failure.Despite a plethora of studies on scour around individual bridge piers or abutments,few studies have focused on the joint impact of a pier and an abutment in proximity to one another on scour.This study conducted laboratory experiments and flow analyses to examine the interaction of piers and abutments and their effect on clear-water scour.The experiments were conducted in a rectangular laboratory flume.They included 18 main tests(with a combination of different types of piers and abutments)and five control tests(with individual piers or abutments).Three pier types(a rectangular pier with a rounded edge,a group of three cylindrical piers,and a single cylindrical pier)and two abutment types(a wingewall abutment and a semicircular abutment)were used.An acoustic Doppler velocimeter was used to measure the three-dimensional flow velocity for analyses of streamline,velocity magnitude,vertical velocity,and bed shear stress.The results showed that the velocity near the pier and abutment increased by up to 80%.The maximum scour depth around the abutment increased by up to 19%.In contrast,the maximum scour depth around the pier increased significantly by up to l71%.The presence of the pier in the vicinity of the abutment led to an increase in the scour hole volume by up to 87%relative to the case with a solitary abutment.Empirical equations were also derived to accurately estimate the maximum scour depth at the pier adjacent to the abutment. 展开更多
关键词 ABUTMENT ADV Bridge scour Laboratory experiment Maximum scour depth PIER
下载PDF
Estimation and inter-comparison of infiltration models in the agricultural area of the Mitidja Plain, Algeria
20
作者 Amina MAZIGHI Hind MEDDI +3 位作者 Mohamed MEDDI Ishak ABDI Giovanni RAVAZZANI Mouna FEKI 《Journal of Arid Land》 SCIE CSCD 2023年第12期1474-1489,共16页
Infiltration is an important part of the hydrological cycle, and it is one of the main abstractions accounted for in the rainfall-runoff modeling. The main purpose of this study is to compare the infiltration models t... Infiltration is an important part of the hydrological cycle, and it is one of the main abstractions accounted for in the rainfall-runoff modeling. The main purpose of this study is to compare the infiltration models that were used to assess the infiltration rate of the Mitidja Plain in Algeria. Field infiltration tests were conducted at 40 different sites using a double ring infiltrometer. Five statistical comparison criteria including root mean squared error(RMSE), normalized root mean squared error(NRMSE), coefficient of correlation(CC), Nash-Sutcliffe efficiency(NSE), and Kling-Gupta efficiency(KGE) were used to determine the best performing infiltration model and to confirm anomalies between predicted and observed values. Then we evaluated performance of five models(i.e., the Philip model, Kostiakov model, Modified Kostiakov model, Novel model, and Horton model) in simulating the infiltration process based on the adjusted performance parameters cited above. Results indicated that the Novel model had the best simulated water infiltration process in the Mitidja Plain in Algeria. However, the Philip model was the weakest to simulate the infiltration process. The conclusion of this study can be useful for estimating infiltration rate at various sites using a Novel model when measured infiltration data are not available and are useful for planning and managing water resources in the study area. 展开更多
关键词 infiltration rate infiltration model double ring infiltrometer Mitidja Plain Novel model
下载PDF
上一页 1 2 97 下一页 到第
使用帮助 返回顶部