Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane ...Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane gap discharge tests were carried out under the gap distance of 5 m at the Qinghai Ultra High Voltage(UHV)test base at an altitude of 2200 m.The experiments measured the physical parameters such as the discharge current,electric field intensity and instantaneous optical power.The duration of the dark period and the critical charge of streamer-toleader transition were obtained at high altitude.Based on radial thermal expansion of the streamer stem,we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude,and calculated the stem temperature,stem radii and the duration of streamer-to-leader transition.Compared with the measured duration of sphere-plane electrode discharge at an altitude of 2200 m,the error rate of the modified model was 0.94%,while the classical model was 6.97%,demonstrating the effectiveness of the modified model.From the comparisons and analysis,several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.展开更多
Voltage Source Converter-based High Voltage Direct Current(VSC-HVDC)transmission technology represents a groundbreaking approach in high voltage Direct Current(DC)transmission,offering numerous technical advantages an...Voltage Source Converter-based High Voltage Direct Current(VSC-HVDC)transmission technology represents a groundbreaking approach in high voltage Direct Current(DC)transmission,offering numerous technical advantages and broad application prospects.However,in the d-q synchronous rotating coordinate system,the VSC-HVDC exhibits the coupling effect of active power and reactive power,so it needs to be decoupled.This paper introduces the basic principle and mathematical model of the VSC-HVDC transmission system.Through the combination of coordinate transformation and variable substitution,a feedforward decoupling control method is derived.Then the VSC-HVDC simulation model is designed,and the simulation analysis is carried out in the MATLAB environment.The simulation results demonstrate that the method effectively achieves decoupling control of active and reactive power,exhibiting superior dynamic performance and robustness.These findings validate the correctness and effectiveness of the control strategy.展开更多
The transient stability of a single machine to infinite-busbar power system with resistortype superconducting fault current limiters (SFCL) is analyzed under asymmetrical short-circuit fault conditions. The SFCL is ...The transient stability of a single machine to infinite-busbar power system with resistortype superconducting fault current limiters (SFCL) is analyzed under asymmetrical short-circuit fault conditions. The SFCL is considered to introduce a resistance into the three-phase circuits when faults occur. Based on the power-angle curves for different short-circuit conditions of the single-line to ground, double-line to ground and line to line short-circuit faults, the influences of the SFCLs on transient stability are analyzed in detail. The time-domain simulation of transient stability is carried out to verify the analytical results.展开更多
This paper deals with that basic economy grounds which support to shift from "grid-tie" to partly "off-grid" PV (photovoltaic) systems. By using our own written VBA (visual basic) Simulation, we can predict th...This paper deals with that basic economy grounds which support to shift from "grid-tie" to partly "off-grid" PV (photovoltaic) systems. By using our own written VBA (visual basic) Simulation, we can predict the size of energy storage capacity and support our basic assumption.展开更多
Traditional assessment indexes could not fully describe offshore wind resources,for the meteorological properties of offshore are more complex than onshore.As a result,the uncertainty of offshore wind power projects w...Traditional assessment indexes could not fully describe offshore wind resources,for the meteorological properties of offshore are more complex than onshore.As a result,the uncertainty of offshore wind power projects would be increased and final economic benefits would be affected.Therefore,a study on offshore wind resource assessment is carried out,including three processes of“studying data sources,conducting multidimensional indexes system and proposing an offshore wind resource assessment method based on analytic hierarchy process(AHP).First,measured wind data and two kinds of reanalysis data are used to analyze the characteristics and reliability of data sources.Second,indexes such as effective wind speed occurrence,affluent level occurrence,coefficient of variation,neutral state occurrence have been proposed to depict availability,richness,and stability of offshore wind resources,respectively.Combined with existing parameters(wind power density,dominant wind direction occurrence,water depth,distance to coast),a multidimensional indexes system has been built and on this basis,an offshore wind energy potential assessment method has been proposed.Furthermore,the proposed method is verified by the annual energy production of five offshore wind turbines and practical operating data of four offshore wind farms in China.This study also compares the ranking results of the AHP model to two multi-criteria decision making(MCDM)models including weighted aggregated sum product assessment(WASPAS)and multi-attribute ideal real comparative analysis(MAIRCA).Results show the proposed method gains well in practical engineering applications,where the economic score values have been considered based on the offshore reasonable utilization hours of the whole life cycle in China.展开更多
The modern travelling wave based fault location principles for transmission lines are analyzed.In order to apply the travelling wave principles to HVDC transmission lines,the special technical problems are studied.Bas...The modern travelling wave based fault location principles for transmission lines are analyzed.In order to apply the travelling wave principles to HVDC transmission lines,the special technical problems are studied.Based on this,a fault locating system for HVDC transmission lines is developed.The system can support modern double ended and single ended travelling wave princi- ples simultaneously,and it is composed of three different parts:travelling wave data acquisition and processing system,communication network and PC based master station.In the system,the fault generated transients are induced from the ground leads of the over-voltage suppression capacitors of an HVDC line through specially developed travelling wave couplers.The system was applied to 500 kV Gezhouba-Nanqiao(Shanghai)HVDC transmission line in China.Some field operation experiences are summarized,showing that the system has very high reliability and accuracy,and the maximum location error is about 3 km(not more than 0.3%of the total line length). Obviously,the application of the system is successful,and the fault location problem has finally been solved completely since the line operation.展开更多
This paper deals with the errors of electric energy metering devices as a result of distortions in the shape of the curves of voltage and current load. It is shown and proved that the errors in energy measurements dep...This paper deals with the errors of electric energy metering devices as a result of distortions in the shape of the curves of voltage and current load. It is shown and proved that the errors in energy measurements depend on the design and the algorithms used in electricity meters. There are three main types of metering devises having different principles: inductive (electro-mechanical), elec-tronic static, and digital electronic (microprocessor). Each of these types has its measuring features. Some devices take into account all the harmonic distortions and the constant component which occur in the network while others measure the power and energy values of the fundamental harmonic only. Such traits lead to the discrepancies in the readings of commercial electric energy meters of different types. Hence, the violations in the measurement system unity occur, and a significant error can be observed in the balance of transmitted/consumed electric energy.展开更多
Owing to the significant number of hybrid generation systems(HGSs)containing various energy sources,coordina-tion between these sources plays a vital role in preserving frequency stability.In this paper,an adaptive co...Owing to the significant number of hybrid generation systems(HGSs)containing various energy sources,coordina-tion between these sources plays a vital role in preserving frequency stability.In this paper,an adaptive coordination control strategy for renewable energy sources(RESs),an aqua electrolyzer(AE)for hydrogen production,and a fuel cell(FC)-based energy storage system(ESS)is proposed to enhance the frequency stability of an HGS.In the proposed system,the excess energy from RESs is used to power electrolysis via an AE for hydrogen energy storage in FCs.The proposed method is based on a proportional-integral(Pl)controller,which is optimally designed using a grey wolf optimization(GWO)algorithm to estimate the surplus energy from RESs(ie,a proportion of total power generation of RESs:Kn).The studied HGS contains various types of generation systems including a diesel generator,wind tur-bines,photovoltaic(PV)systems,AE with FCs,and ESSs(e.g.,battery and flywheel).The proposed method varies Kn with varying frequency deviation values to obtain the best benefits from RESs,while damping the frequency fluc-tuations.The proposed method is validated by considering different loading conditions and comparing with other existing studies that consider Kn as a constant value.The simulation results demonstrate that the proposed method,which changes Kn value and subsequently stores the power extracted from the RESs in hydrogen energy storage according to frequency deviation changes,performs better than those that use constant Kn.The statistical analysis for frequency deviation of HGS with the proposed method has the best values and achieves large improvements for minimum,maximum,difference between maximum and minimum,mean,and standard deviation compared to the existing method.展开更多
The main purpose of the work presented here is to evaluate different methods for quality control of polymeric insulated HVDC cables.The insight gained can be used to evaluate proposed test methods for quality assuranc...The main purpose of the work presented here is to evaluate different methods for quality control of polymeric insulated HVDC cables.The insight gained can be used to evaluate proposed test methods for quality assurance of long lengths of polymer insulated power cables.Laboratory experiments were performed using both Rogowski shaped test objects and model cables,insulated with XLPE containing imbedded spherically shaped particles.Tests were performed by stressing the test object with AC(50 Hz),VLF(0.1 Hz) and DC voltages and measuring time to breakdown at the different voltages.The slope of the voltage-time curve for 0.1 and 50 Hz were found to be parallel showing higher breakdown strength for 0.1 Hz than 50 Hz.The number of periods to breakdown is somewhat higher for 0.1 Hz than for 50 Hz.The breakdown strength for DC was much higher than for both AC 50 Hz and 0.1 Hz.The results indicate that the VLF test voltage needs to be 2 to 3 times higher than at 50 Hz power frequency in order to eliminate the same defects within a comparable time.展开更多
Current phase comparison based pilot protection had been generally utilized as primary protection of the transmission lines in China from the 1950's to the 1980' s, Comentional phase comparison pilot protection has ...Current phase comparison based pilot protection had been generally utilized as primary protection of the transmission lines in China from the 1950's to the 1980' s, Comentional phase comparison pilot protection has a long phase comparison time, which results in a longer fault-clearing time. This paper proposes a new current phase comparison, pilot protection scheme that is based on non-power frequency fauh eun'ent component. The phase of the fourth harmonic eun'ent of each end of the protected line has heen abstracted hy utilizing complex wavelet transformation and then compared in order to determine whether the inner fauh occurs or not. This way can greatly deerease fauh-elearing time and improve performances of this pilot protection when fault occurs under the heavy-load current and asymmetrical operation eonditions, Many EMTP simulations have verified the proposed scheme's correctness and effectiveness.展开更多
The impedance element in distance protection equipment in the outgoing line of a wind park(WP)may be heavily affected by the fault response of the WP.During resistive grid faults,relay over-reach(or under-reach)may ma...The impedance element in distance protection equipment in the outgoing line of a wind park(WP)may be heavily affected by the fault response of the WP.During resistive grid faults,relay over-reach(or under-reach)may manifest,depending on the fault current regulating requirements in the specific grid code deployed in WP and the fault conditions.Aiming at potential solution,i.e.the existing zone 1(fast tripping zone,non-delayed)top-line tilting(Z-1-TLT)function in modern numerical relays,this paper first assesses its adaptability under the WP integrated background.Combining the principle of Z-1-TLT itself and fault modeling to the WP,an improved Z-1-TLT scheme is developed,which can actively compensate for the possible relay overreach or under-reach during resistive faults,utilizing relay side fault quantities only.Aiming at the needless action of the new Z-1-TLT scheme against certain faults,malfunction risk area detection and dead zone detection are introduced as auxiliary criteria to optimize protective efficiency.Simulation results prove the improved Z-1-TLT scheme can effectively improve reliability of distance protection deployed in the WP outgoing line.展开更多
The electric power system is an ageing infrastructure and the need for making reinvestments is increasing. Strict economic regulation of the DSOs (distribution system operators), forces them to search for more effic...The electric power system is an ageing infrastructure and the need for making reinvestments is increasing. Strict economic regulation of the DSOs (distribution system operators), forces them to search for more efficient work processes and improved technical solutions. The main challenges for network companies today are implementing new technologies and become more efficient in every part of the asset management. The work processes must be optimized and the right projects must be prioritized for reinvestment. The purpose of this paper is to give insight into some of the challenges electric distribution companies are facing today. This paper is based on experiences from NTE Nett AS--an electric distribution company in the middle of Norway. The paper also describes some of the measures that have been done in NTE Nett and what people believe will be the situation in the future.展开更多
This paper presents the mean–variance(MV)model to solve power system reactive power dispatch problems with wind power integrated.The MV model considers the profit and risk simultaneously under the uncertain wind powe...This paper presents the mean–variance(MV)model to solve power system reactive power dispatch problems with wind power integrated.The MV model considers the profit and risk simultaneously under the uncertain wind power(speed)environment.To describe this uncertain environment,the Latin hypercube sampling with Cholesky decomposition simulation method is used to sample uncertain wind speeds.An improved optimization algorithm,group search optimizer with intraspecific competition and le´vy walk,is then used to optimize the MV model by introducing the risk tolerance parameter.The simulation is conducted based on the IEEE 30-bus power system,and the results demonstrate the effectiveness and validity of the proposed model and the optimization algorithm.展开更多
This paper describes the integration of a photovoltaic (PV) renewable energy source with a superconducting magnetic energy storage (SMES) system. The integrated system can improve the voltage stability of the utility ...This paper describes the integration of a photovoltaic (PV) renewable energy source with a superconducting magnetic energy storage (SMES) system. The integrated system can improve the voltage stability of the utility grid and achieve power leveling. The control schemes employ model predictive control (MPC), which has gained significant attention in recent years because of its advantages such as fast response and simple implementation. The PV system provides maximum power at various irradiation levels using the incremental conductance technique (INC). The interfaced grid side converter of the SMES can control the grid voltage by regulating its injected reactive power to the grid, while the charge and discharge operation of the SMES coil can be managed by the system operator to inject/absorb active power to/from the grid to achieve the power leveling strategy. Simulation results based on MATLAB/Simulink® software prove the fast response of the system control objectives in tracking the setpoints at different loading scenarios and PV irradiance levels, while the SMES injects/absorbs active and reactive power to/from the grid during various events to improve the voltage response and achieve power leveling strategy.展开更多
Non-pressurised air is extensively used as basic insulation medium in high-voltage equipment.Unfortunately,an inherent property of air-insulated design is that the system tends to become physically large.On the other ...Non-pressurised air is extensively used as basic insulation medium in high-voltage equipment.Unfortunately,an inherent property of air-insulated design is that the system tends to become physically large.On the other hand,the application of dielectric barriers can increase the breakdown voltage and therefore decrease the size of the equipment.In this study,the impact of dielectric barriers on breakdown voltage enhancement is investigated under both direct current(dc)and alternating current(ac)applied voltages.For this purpose,three kinds of dielectric barriers in two different high-voltage electrode structures are investigated.In the first structure,several experiments are carried out with four different electrode arrangements,keeping the inter-electrode gap constant while varying the position of the dielectric barrier between the electrodes.In the second structure,the inter-electrode gap is varied while the high-voltage electrode is covered with dielectric materials.The influences of different parameters such as inter-electrode spacing,electric field non-uniformity factor,and dielectric materials on the breakdown voltage are investigated for applied 50 Hz ac and dc voltages.In addition,a simulation model to approximately calculate the breakdown voltage is proposed and validated with the experimental results.展开更多
In an active distribution grid,renewable energy sources(RESs)such as photovoltaic(PV)and energy storage systems(e.g.,superconducting magnetic energy storage(SMES))can be combined with consumers to compose a microgrid(...In an active distribution grid,renewable energy sources(RESs)such as photovoltaic(PV)and energy storage systems(e.g.,superconducting magnetic energy storage(SMES))can be combined with consumers to compose a microgrid(MG).The high penetration of PV causes high fluctuations of tie-line power flow and highly affects power system operations.This can lead to several technical problems such as voltage fluctuations and excessive power losses.In this paper,a fuzzy logic control based SMES method(FSM)and an optimized fuzzy logic control based SMES method(OFSM)are proposed for minimizing the tie-line power flow.Consequently,the fluctuations and transmission power losses are decreased.In FSM,SMES is used with a robust fuzzy logic controller(FLC)for controlling the tie-line power flow.An optimization model is employed in OFSM to simultaneously optimize the input parameters of the FLC and the reactive power of the voltage source converter(VSC)of SMES.The objective function of minimizing the tieline power flow is incorporated into the optimization model.Particle swarm optimization(PSO)algorithm is utilized to solve the optimization problem while the constraints of the utility power grid,VSC,and SMES are considered.The simulation results demonstrate the effectiveness and robustness of the proposed methods.展开更多
Unlocking offshore wind farms’high energy generation potential requires a comprehensive multi-disciplinary analysis that consists of intensive technical,economic,logistical,and environmental investigations.Offshore w...Unlocking offshore wind farms’high energy generation potential requires a comprehensive multi-disciplinary analysis that consists of intensive technical,economic,logistical,and environmental investigations.Offshore wind energy projects have high investment volumes that make it essential to conduct extensive site selection to ensure feasible investment decisions that reduce the potential financial risks.Depending on the scenario and circumstances,a ranking of alternative offshore wind energy projects helps to prioritise the investment decisions.Decisionmaking algorithms based on expert knowledge can support the prioritisation and thus alleviate the work load for investment decisions in the future.The case study considered here is to find the best site for a floating offshore wind farm in Norway from four pre-selected alternatives:Utsira Nord,Stadthavet,Froyabanken,and Trana Vest.We propose a hybrid decisionmaking model as a combined compromised solution(CoCoSo)based on the q-rung orthopair fuzzy sets(q-ROFSs)including the weighted q-rung orthopair fuzzy Hamacher average(Wq-ROFHA)and the weighted q-rung orthopair fuzzy Hamacher geometric mean(Wq-ROFHGM)operators.In this model,the q-ROFSs based full consistency method(FUCOM)is introduced as a new methodology to determine the weights of the decision criteria.The results of the proposed model show that the best site among the investigated four alternatives is A1:Utsira Nord.A sensitivity analysis has verified the stability of the proposed decision-making model.展开更多
It is a well known fact that pulse width modulation(PWM)produces sideband effects.Taking this point into account,the accuracy of the grid-connected inverter model can be improved.In this paper,considering the aliasing...It is a well known fact that pulse width modulation(PWM)produces sideband effects.Taking this point into account,the accuracy of the grid-connected inverter model can be improved.In this paper,considering the aliasing effect of the PWM sideband components on the closed-loop control,a complete representation for the transfer function of the PWM is obtained.Furthermore,a multi-frequency model of grid-connected inverter system is derived.It is convenient for obtaining a PWM gain for grid-connected inverter system,which is PWM-controlled.In order to have an easy physical expression of the effects caused by the sideband components,an approximation is applied to simplify the PWM gain.The stability analysis is used to prove that PWM gain considering PWM effect is more precise than the conventional one.Experimental results verify the effectiveness of our proposal.展开更多
The discussions on the development of an electricity market model for accommodating cross-border cooperation remains active in Europe.The main interest is the establishment of market couplings without curtailing the f...The discussions on the development of an electricity market model for accommodating cross-border cooperation remains active in Europe.The main interest is the establishment of market couplings without curtailing the fair use of the scarce transmission capacity.However,it is difficult to gain mutual consensus on this subject because of the absence of convincing simulation results for the entire region.To achieve that,researchers need a common grid model(CGM)which is a simplified representation of the detailed transmission model which comprises aggregated buses and transmission lines.A CGM should sufficiently represent the inter-area power flow characteristics.Generally,it is difficult to establish a standard CGM that represents the actual transmission network with a suf-ficient degree of exactness because it requires knowledge on the details of the transmission network,which are undisclosed.This paper addresses the issue and reviews the existing approaches in transmission network approximation,and their shortcomings.Then,it proposes a new approach called the adaptive CGM approximation(ACA)for serving the purpose.The ACA is a datadriven approach,developed based on the direct current power flow theory.It is able to construct a CGM based on the published power flow data between the inter-connected market areas.This is done by solving the issue as a non-linear model fitting problem.The method is validated using three case studies.展开更多
基金supported by National Natural Science Foundation of China(Scientific Funds for Young Scientists)(No.52007064)。
文摘Historically,streamer-to-leader transition studies mainly focused on the rod-plane gap and low altitude analysis,with limited attention paid to the sphere-plane gap at high altitude analysis.In this work,sphere-plane gap discharge tests were carried out under the gap distance of 5 m at the Qinghai Ultra High Voltage(UHV)test base at an altitude of 2200 m.The experiments measured the physical parameters such as the discharge current,electric field intensity and instantaneous optical power.The duration of the dark period and the critical charge of streamer-toleader transition were obtained at high altitude.Based on radial thermal expansion of the streamer stem,we established a modified streamer-to-leader transition model of the sphere-plane gap discharge at high altitude,and calculated the stem temperature,stem radii and the duration of streamer-to-leader transition.Compared with the measured duration of sphere-plane electrode discharge at an altitude of 2200 m,the error rate of the modified model was 0.94%,while the classical model was 6.97%,demonstrating the effectiveness of the modified model.From the comparisons and analysis,several suggestions are proposed to improve the numerical model for further quantitative investigations of the leader inception.
文摘Voltage Source Converter-based High Voltage Direct Current(VSC-HVDC)transmission technology represents a groundbreaking approach in high voltage Direct Current(DC)transmission,offering numerous technical advantages and broad application prospects.However,in the d-q synchronous rotating coordinate system,the VSC-HVDC exhibits the coupling effect of active power and reactive power,so it needs to be decoupled.This paper introduces the basic principle and mathematical model of the VSC-HVDC transmission system.Through the combination of coordinate transformation and variable substitution,a feedforward decoupling control method is derived.Then the VSC-HVDC simulation model is designed,and the simulation analysis is carried out in the MATLAB environment.The simulation results demonstrate that the method effectively achieves decoupling control of active and reactive power,exhibiting superior dynamic performance and robustness.These findings validate the correctness and effectiveness of the control strategy.
文摘The transient stability of a single machine to infinite-busbar power system with resistortype superconducting fault current limiters (SFCL) is analyzed under asymmetrical short-circuit fault conditions. The SFCL is considered to introduce a resistance into the three-phase circuits when faults occur. Based on the power-angle curves for different short-circuit conditions of the single-line to ground, double-line to ground and line to line short-circuit faults, the influences of the SFCLs on transient stability are analyzed in detail. The time-domain simulation of transient stability is carried out to verify the analytical results.
文摘This paper deals with that basic economy grounds which support to shift from "grid-tie" to partly "off-grid" PV (photovoltaic) systems. By using our own written VBA (visual basic) Simulation, we can predict the size of energy storage capacity and support our basic assumption.
文摘Traditional assessment indexes could not fully describe offshore wind resources,for the meteorological properties of offshore are more complex than onshore.As a result,the uncertainty of offshore wind power projects would be increased and final economic benefits would be affected.Therefore,a study on offshore wind resource assessment is carried out,including three processes of“studying data sources,conducting multidimensional indexes system and proposing an offshore wind resource assessment method based on analytic hierarchy process(AHP).First,measured wind data and two kinds of reanalysis data are used to analyze the characteristics and reliability of data sources.Second,indexes such as effective wind speed occurrence,affluent level occurrence,coefficient of variation,neutral state occurrence have been proposed to depict availability,richness,and stability of offshore wind resources,respectively.Combined with existing parameters(wind power density,dominant wind direction occurrence,water depth,distance to coast),a multidimensional indexes system has been built and on this basis,an offshore wind energy potential assessment method has been proposed.Furthermore,the proposed method is verified by the annual energy production of five offshore wind turbines and practical operating data of four offshore wind farms in China.This study also compares the ranking results of the AHP model to two multi-criteria decision making(MCDM)models including weighted aggregated sum product assessment(WASPAS)and multi-attribute ideal real comparative analysis(MAIRCA).Results show the proposed method gains well in practical engineering applications,where the economic score values have been considered based on the offshore reasonable utilization hours of the whole life cycle in China.
文摘The modern travelling wave based fault location principles for transmission lines are analyzed.In order to apply the travelling wave principles to HVDC transmission lines,the special technical problems are studied.Based on this,a fault locating system for HVDC transmission lines is developed.The system can support modern double ended and single ended travelling wave princi- ples simultaneously,and it is composed of three different parts:travelling wave data acquisition and processing system,communication network and PC based master station.In the system,the fault generated transients are induced from the ground leads of the over-voltage suppression capacitors of an HVDC line through specially developed travelling wave couplers.The system was applied to 500 kV Gezhouba-Nanqiao(Shanghai)HVDC transmission line in China.Some field operation experiences are summarized,showing that the system has very high reliability and accuracy,and the maximum location error is about 3 km(not more than 0.3%of the total line length). Obviously,the application of the system is successful,and the fault location problem has finally been solved completely since the line operation.
文摘This paper deals with the errors of electric energy metering devices as a result of distortions in the shape of the curves of voltage and current load. It is shown and proved that the errors in energy measurements depend on the design and the algorithms used in electricity meters. There are three main types of metering devises having different principles: inductive (electro-mechanical), elec-tronic static, and digital electronic (microprocessor). Each of these types has its measuring features. Some devices take into account all the harmonic distortions and the constant component which occur in the network while others measure the power and energy values of the fundamental harmonic only. Such traits lead to the discrepancies in the readings of commercial electric energy meters of different types. Hence, the violations in the measurement system unity occur, and a significant error can be observed in the balance of transmitted/consumed electric energy.
文摘Owing to the significant number of hybrid generation systems(HGSs)containing various energy sources,coordina-tion between these sources plays a vital role in preserving frequency stability.In this paper,an adaptive coordination control strategy for renewable energy sources(RESs),an aqua electrolyzer(AE)for hydrogen production,and a fuel cell(FC)-based energy storage system(ESS)is proposed to enhance the frequency stability of an HGS.In the proposed system,the excess energy from RESs is used to power electrolysis via an AE for hydrogen energy storage in FCs.The proposed method is based on a proportional-integral(Pl)controller,which is optimally designed using a grey wolf optimization(GWO)algorithm to estimate the surplus energy from RESs(ie,a proportion of total power generation of RESs:Kn).The studied HGS contains various types of generation systems including a diesel generator,wind tur-bines,photovoltaic(PV)systems,AE with FCs,and ESSs(e.g.,battery and flywheel).The proposed method varies Kn with varying frequency deviation values to obtain the best benefits from RESs,while damping the frequency fluc-tuations.The proposed method is validated by considering different loading conditions and comparing with other existing studies that consider Kn as a constant value.The simulation results demonstrate that the proposed method,which changes Kn value and subsequently stores the power extracted from the RESs in hydrogen energy storage according to frequency deviation changes,performs better than those that use constant Kn.The statistical analysis for frequency deviation of HGS with the proposed method has the best values and achieves large improvements for minimum,maximum,difference between maximum and minimum,mean,and standard deviation compared to the existing method.
文摘The main purpose of the work presented here is to evaluate different methods for quality control of polymeric insulated HVDC cables.The insight gained can be used to evaluate proposed test methods for quality assurance of long lengths of polymer insulated power cables.Laboratory experiments were performed using both Rogowski shaped test objects and model cables,insulated with XLPE containing imbedded spherically shaped particles.Tests were performed by stressing the test object with AC(50 Hz),VLF(0.1 Hz) and DC voltages and measuring time to breakdown at the different voltages.The slope of the voltage-time curve for 0.1 and 50 Hz were found to be parallel showing higher breakdown strength for 0.1 Hz than 50 Hz.The number of periods to breakdown is somewhat higher for 0.1 Hz than for 50 Hz.The breakdown strength for DC was much higher than for both AC 50 Hz and 0.1 Hz.The results indicate that the VLF test voltage needs to be 2 to 3 times higher than at 50 Hz power frequency in order to eliminate the same defects within a comparable time.
基金Sponsored by the Power Electrical Science and Technology Foundation of XJ Group and the Shanghai University Foundation for Excellent Young Teacher.
文摘Current phase comparison based pilot protection had been generally utilized as primary protection of the transmission lines in China from the 1950's to the 1980' s, Comentional phase comparison pilot protection has a long phase comparison time, which results in a longer fault-clearing time. This paper proposes a new current phase comparison, pilot protection scheme that is based on non-power frequency fauh eun'ent component. The phase of the fourth harmonic eun'ent of each end of the protected line has heen abstracted hy utilizing complex wavelet transformation and then compared in order to determine whether the inner fauh occurs or not. This way can greatly deerease fauh-elearing time and improve performances of this pilot protection when fault occurs under the heavy-load current and asymmetrical operation eonditions, Many EMTP simulations have verified the proposed scheme's correctness and effectiveness.
基金This work was supported by the EUDP Project‘Voltage Control and Protection for a Grid towards 100%Power Electronics and Cable Network(COPE)’(EUDP17-I:12561)。
文摘The impedance element in distance protection equipment in the outgoing line of a wind park(WP)may be heavily affected by the fault response of the WP.During resistive grid faults,relay over-reach(or under-reach)may manifest,depending on the fault current regulating requirements in the specific grid code deployed in WP and the fault conditions.Aiming at potential solution,i.e.the existing zone 1(fast tripping zone,non-delayed)top-line tilting(Z-1-TLT)function in modern numerical relays,this paper first assesses its adaptability under the WP integrated background.Combining the principle of Z-1-TLT itself and fault modeling to the WP,an improved Z-1-TLT scheme is developed,which can actively compensate for the possible relay overreach or under-reach during resistive faults,utilizing relay side fault quantities only.Aiming at the needless action of the new Z-1-TLT scheme against certain faults,malfunction risk area detection and dead zone detection are introduced as auxiliary criteria to optimize protective efficiency.Simulation results prove the improved Z-1-TLT scheme can effectively improve reliability of distance protection deployed in the WP outgoing line.
文摘The electric power system is an ageing infrastructure and the need for making reinvestments is increasing. Strict economic regulation of the DSOs (distribution system operators), forces them to search for more efficient work processes and improved technical solutions. The main challenges for network companies today are implementing new technologies and become more efficient in every part of the asset management. The work processes must be optimized and the right projects must be prioritized for reinvestment. The purpose of this paper is to give insight into some of the challenges electric distribution companies are facing today. This paper is based on experiences from NTE Nett AS--an electric distribution company in the middle of Norway. The paper also describes some of the measures that have been done in NTE Nett and what people believe will be the situation in the future.
基金The work is funded by Guangdong Innovative Research Team Program(No.201001N0104744201)National Key Basic Research and Development Program(973 Program,No.2012CB215100),ChinaThe first author thanks for the financial support from China Scholarship Council Program(No.201306150070).
文摘This paper presents the mean–variance(MV)model to solve power system reactive power dispatch problems with wind power integrated.The MV model considers the profit and risk simultaneously under the uncertain wind power(speed)environment.To describe this uncertain environment,the Latin hypercube sampling with Cholesky decomposition simulation method is used to sample uncertain wind speeds.An improved optimization algorithm,group search optimizer with intraspecific competition and le´vy walk,is then used to optimize the MV model by introducing the risk tolerance parameter.The simulation is conducted based on the IEEE 30-bus power system,and the results demonstrate the effectiveness and validity of the proposed model and the optimization algorithm.
基金supported in part by the Estonian Research Council grant PSG206in part by the Estonian Centre of Excellence in Zero Energy and Resource Efficient Smart Buildings and Districts,ZEBE,grant 2014-2020.4.01.15-0016 funded by the European Regional Development Fund.
文摘This paper describes the integration of a photovoltaic (PV) renewable energy source with a superconducting magnetic energy storage (SMES) system. The integrated system can improve the voltage stability of the utility grid and achieve power leveling. The control schemes employ model predictive control (MPC), which has gained significant attention in recent years because of its advantages such as fast response and simple implementation. The PV system provides maximum power at various irradiation levels using the incremental conductance technique (INC). The interfaced grid side converter of the SMES can control the grid voltage by regulating its injected reactive power to the grid, while the charge and discharge operation of the SMES coil can be managed by the system operator to inject/absorb active power to/from the grid to achieve the power leveling strategy. Simulation results based on MATLAB/Simulink® software prove the fast response of the system control objectives in tracking the setpoints at different loading scenarios and PV irradiance levels, while the SMES injects/absorbs active and reactive power to/from the grid during various events to improve the voltage response and achieve power leveling strategy.
文摘Non-pressurised air is extensively used as basic insulation medium in high-voltage equipment.Unfortunately,an inherent property of air-insulated design is that the system tends to become physically large.On the other hand,the application of dielectric barriers can increase the breakdown voltage and therefore decrease the size of the equipment.In this study,the impact of dielectric barriers on breakdown voltage enhancement is investigated under both direct current(dc)and alternating current(ac)applied voltages.For this purpose,three kinds of dielectric barriers in two different high-voltage electrode structures are investigated.In the first structure,several experiments are carried out with four different electrode arrangements,keeping the inter-electrode gap constant while varying the position of the dielectric barrier between the electrodes.In the second structure,the inter-electrode gap is varied while the high-voltage electrode is covered with dielectric materials.The influences of different parameters such as inter-electrode spacing,electric field non-uniformity factor,and dielectric materials on the breakdown voltage are investigated for applied 50 Hz ac and dc voltages.In addition,a simulation model to approximately calculate the breakdown voltage is proposed and validated with the experimental results.
文摘In an active distribution grid,renewable energy sources(RESs)such as photovoltaic(PV)and energy storage systems(e.g.,superconducting magnetic energy storage(SMES))can be combined with consumers to compose a microgrid(MG).The high penetration of PV causes high fluctuations of tie-line power flow and highly affects power system operations.This can lead to several technical problems such as voltage fluctuations and excessive power losses.In this paper,a fuzzy logic control based SMES method(FSM)and an optimized fuzzy logic control based SMES method(OFSM)are proposed for minimizing the tie-line power flow.Consequently,the fluctuations and transmission power losses are decreased.In FSM,SMES is used with a robust fuzzy logic controller(FLC)for controlling the tie-line power flow.An optimization model is employed in OFSM to simultaneously optimize the input parameters of the FLC and the reactive power of the voltage source converter(VSC)of SMES.The objective function of minimizing the tieline power flow is incorporated into the optimization model.Particle swarm optimization(PSO)algorithm is utilized to solve the optimization problem while the constraints of the utility power grid,VSC,and SMES are considered.The simulation results demonstrate the effectiveness and robustness of the proposed methods.
基金This work has been prepared as part of the Norwegian Research Centre on Wind Energy(NorthWind)and the project Research on Smart Operation Control Technologies for Offshore Wind Farms(CONWIND)NorthWind(2021-2029)is a Centre for Environmental-friendly Energy Research co-financed by the Research Council of Norway(contract 321954)CONWIND(2020-2022)is a Norwegian-Chinese collaboration project on offshore wind energy co-financed by the Research Council of Norway(contract 304229).
文摘Unlocking offshore wind farms’high energy generation potential requires a comprehensive multi-disciplinary analysis that consists of intensive technical,economic,logistical,and environmental investigations.Offshore wind energy projects have high investment volumes that make it essential to conduct extensive site selection to ensure feasible investment decisions that reduce the potential financial risks.Depending on the scenario and circumstances,a ranking of alternative offshore wind energy projects helps to prioritise the investment decisions.Decisionmaking algorithms based on expert knowledge can support the prioritisation and thus alleviate the work load for investment decisions in the future.The case study considered here is to find the best site for a floating offshore wind farm in Norway from four pre-selected alternatives:Utsira Nord,Stadthavet,Froyabanken,and Trana Vest.We propose a hybrid decisionmaking model as a combined compromised solution(CoCoSo)based on the q-rung orthopair fuzzy sets(q-ROFSs)including the weighted q-rung orthopair fuzzy Hamacher average(Wq-ROFHA)and the weighted q-rung orthopair fuzzy Hamacher geometric mean(Wq-ROFHGM)operators.In this model,the q-ROFSs based full consistency method(FUCOM)is introduced as a new methodology to determine the weights of the decision criteria.The results of the proposed model show that the best site among the investigated four alternatives is A1:Utsira Nord.A sensitivity analysis has verified the stability of the proposed decision-making model.
基金This work was supported by the National Natural Science Foundation of China(51677161)Natural Science Foundation of Hebei Province(E2019203563).
文摘It is a well known fact that pulse width modulation(PWM)produces sideband effects.Taking this point into account,the accuracy of the grid-connected inverter model can be improved.In this paper,considering the aliasing effect of the PWM sideband components on the closed-loop control,a complete representation for the transfer function of the PWM is obtained.Furthermore,a multi-frequency model of grid-connected inverter system is derived.It is convenient for obtaining a PWM gain for grid-connected inverter system,which is PWM-controlled.In order to have an easy physical expression of the effects caused by the sideband components,an approximation is applied to simplify the PWM gain.The stability analysis is used to prove that PWM gain considering PWM effect is more precise than the conventional one.Experimental results verify the effectiveness of our proposal.
基金This work was funded by the Norwegian Centre of Offshore Wind Technologies(NOWITECH).
文摘The discussions on the development of an electricity market model for accommodating cross-border cooperation remains active in Europe.The main interest is the establishment of market couplings without curtailing the fair use of the scarce transmission capacity.However,it is difficult to gain mutual consensus on this subject because of the absence of convincing simulation results for the entire region.To achieve that,researchers need a common grid model(CGM)which is a simplified representation of the detailed transmission model which comprises aggregated buses and transmission lines.A CGM should sufficiently represent the inter-area power flow characteristics.Generally,it is difficult to establish a standard CGM that represents the actual transmission network with a suf-ficient degree of exactness because it requires knowledge on the details of the transmission network,which are undisclosed.This paper addresses the issue and reviews the existing approaches in transmission network approximation,and their shortcomings.Then,it proposes a new approach called the adaptive CGM approximation(ACA)for serving the purpose.The ACA is a datadriven approach,developed based on the direct current power flow theory.It is able to construct a CGM based on the published power flow data between the inter-connected market areas.This is done by solving the issue as a non-linear model fitting problem.The method is validated using three case studies.