Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of scholars.The biomedical corpus contains numerous complex long sentences and overlapping relati...Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of scholars.The biomedical corpus contains numerous complex long sentences and overlapping relational triples,making most generalized domain joint modeling methods difficult to apply effectively in this field.For a complex semantic environment in biomedical texts,in this paper,we propose a novel perspective to perform joint entity and relation extraction;existing studies divide the relation triples into several steps or modules.However,the three elements in the relation triples are interdependent and inseparable,so we regard joint extraction as a tripartite classification problem.At the same time,fromthe perspective of triple classification,we design amulti-granularity 2D convolution to refine the word pair table and better utilize the dependencies between biomedical word pairs.Finally,we use a biaffine predictor to assist in predicting the labels of word pairs for relation extraction.Our model(MCTPL)Multi-granularity Convolutional Tokens Pairs of Labeling better utilizes the elements of triples and improves the ability to extract overlapping triples compared to previous approaches.Finally,we evaluated our model on two publicly accessible datasets.The experimental results show that our model’s ability to extract relation triples on the CPI dataset improves the F1 score by 2.34%compared to the current optimal model.On the DDI dataset,the F1 value improves the F1 value by 1.68%compared to the current optimal model.Our model achieved state-of-the-art performance compared to other baseline models in biomedical text entity relation extraction.展开更多
Cooperation in energy systems is no longer limited to the distribution of electricity,and more attention is paid to the trading of green certificates(GCs).This paper proposed a cooperative method for photovoltaic(PV)a...Cooperation in energy systems is no longer limited to the distribution of electricity,and more attention is paid to the trading of green certificates(GCs).This paper proposed a cooperative method for photovoltaic(PV)and electric-to-hydrogen(EH)trading,including GC trading under risk management.First,a novel PV and EH model is established and the cooperation mechanism is analyzed.Meanwhile,PV and EH models were risk-controlled using the conditional value at risk to reduce the impact of the uncertainty of PV electricity and EH loads.Then,the PV-EH cooperative model was established based on cooperative game theory;this was then divided into two subproblems of“cooperative benefit maximization”and“transaction payment negotiation,”and the above two subproblems were solved distributively by alternating direction multiplier method(ADMM).Only energy transactions and price negotiations were conducted between the PV and EH,which can protect the privacy and confidentiality of each entity.Finally,the effectiveness of the cooperation model was verified using a practical engineering case.The simulation results show that the cooperation of the PV-EH can significantly improve the operational efficiency of each entity and the overall efficiency of the cooperation and realize the efficient redistribution of electricity and GC.展开更多
The widespread usage of clean and sustainable energy sources is leading to a significant transformation of the world’s energy systems. Over-reliance on only the national grid energy system has made institutions fail ...The widespread usage of clean and sustainable energy sources is leading to a significant transformation of the world’s energy systems. Over-reliance on only the national grid energy system has made institutions fail to sustain energy systems. The council is only connected to the national grid electricity supply system, with diesel generators as the only alternative, which is unhealthy and unsafe. Surprisingly, even with such alternatives, power shortages have persisted despite government efforts to provide a solution to the shortages by installing numerous off-grid systems. Due to such a situation, the council would construct a sustainable energy system as a remedy. Thus, the purpose of this study was to establish critical success factors influencing the implementation of a sustainable energy system at the Inter-University Council of East Africa (IUCEA) Head Quarters, Kampala-Uganda. A cross-sectional survey design was used;a sample size of 84 participants was selected. Questionnaire survey and interview methods were utilized. The study found that the most significant (p < 0.05) critical factors in the implementation of sustainable energy in institutions are;the use of innovative technologies and infrastructure, the use of efficient zero emissions for heating and cooling, integration of renewable energy use in the existing buildings, building and renovating in an energy-efficient way, integrating regional energy systems, improving energy efficiency in the buildings, enhanced zero emission power technologies, energy efficient equipment in place and stakeholder empowerment in energy management. This study concludes that institutions like;the Inter-University Council of East Africa (IUCEA) need to clearly state policies and actions of energy management. The roles and responsibilities of each member have to be clearly stated while capturing the activities involved in energy conservation, energy security and energy efficiency.展开更多
AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the f...AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024.展开更多
This paper discusses telemedicine and the employment of advanced mobile technologies in smart healthcare delivery. It covers the technological advances in connected smart healthcare, including the roles of artificial ...This paper discusses telemedicine and the employment of advanced mobile technologies in smart healthcare delivery. It covers the technological advances in connected smart healthcare, including the roles of artificial intelligence, machine learning, 5G and IoT platforms, and other enabling technologies. It also presents the challenges and potential risks that could arise from delivering connected smart healthcare services. Healthcare delivery is witnessing revolutions engineered by the developments in mobile connectivity and the plethora of platforms, applications, sensors, devices, and equipment that go along with it. Human society is evolving fast in response to these technological developments, which are also pushing the connectivity-providing sector to create and adopt new waves of network technologies. Consequently, new communications technologies have been introduced into the healthcare system and many novel applications have been developed to make it easier for sharing data in various forms and volumes within health-related services. These applications have also made it possible for telemedicine to be effectively adopted. This paper provides an overview of some of the recent developments within the space of mobile connectivity and telemedicine.展开更多
In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order t...In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.展开更多
One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-st...One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-streamer propagation is one of most important stages in long air gap discharge. In the conductor-tower lattice configuration, we have measured the voltage, the current on the high voltage side and the electric field in the gap. While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape, the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in: the experiment. Besides, it is found that the leader velocity, width and injected charge for the branch type streamer are greater than those of a diffuse type. We propose that the phenomenon results from the high humidity, which was 15.5-16.5 g/m3 in our experiment.展开更多
The impact of daily emissions of gaseous and particulate pollutants of machines and industries on human health and the environment has attracted increasing concerns.This impact has significantly led to a notable incre...The impact of daily emissions of gaseous and particulate pollutants of machines and industries on human health and the environment has attracted increasing concerns.This impact has significantly led to a notable increase in mortality in the highly industrialized zones.Therefore,monitoring air quality and creating public awareness are important for a safer future,which led the governments globally to investmulti-billion in policymaking and solution stratification to address the problem.This study aims to design a realtime Internet of Things low-cost air quality monitoring system.The system utilizes air quality and carbon monoxide sensors for monitoring gaseous pollutants.Moreover,the system utilizes an Arduino Nano development board equipped with a WiFi module to effectively send readings to a ThingSpeak online channel platformfor instantaneous and real-time display of air quality.The ThingSpeak uses HTTP protocols to send emails in raising awareness of poor air quality.The level of concentration is monitored graphically through channels with the help of ThingSpeak to aid remote communication.Athreshold value is set.Thus,when pollutants have become unhealthy and harmful,the system trips off an alarm,and e-mail notifications are sent to the officials.The results have shown that the work was successfully implemented a design of a low-cost air quality monitoring system using Arduino and ThingSpeak,showing that an air quality system can be implemented using a low-cost technology,Arduino and ThingSpeak.展开更多
Security constrained multi area multi objective dynamic economic dispatch (SCMAMODED) with renewable energy (RE) and all the possible MTDC stability constraints is formulated for the first time. The stability merits o...Security constrained multi area multi objective dynamic economic dispatch (SCMAMODED) with renewable energy (RE) and all the possible MTDC stability constraints is formulated for the first time. The stability merits of multi terminal DC (MTDC) tie lines as compared to the traditional HVAC forms the main objective of this paper. Probabilistic load flow (PLF) is applied to determine the system parameters while the uncertainties are modelled using Scenario Based Method (SBM). The simulation results reveal that with the use of MTDC tie lines, the frequency and voltage stability in the MAMODED with renewable energy sources (RES) are enhanced while keeping the MTDC power exchange interface nodes at secure levels.展开更多
Renewable sources of energy are being integrated into the power grids due to their economic and environmental merits as compared with the traditional fossil-fuel-fired power generation. However, their significant pene...Renewable sources of energy are being integrated into the power grids due to their economic and environmental merits as compared with the traditional fossil-fuel-fired power generation. However, their significant penetration demands a thorough research in terms of system reliability, that is, security and stability. In this paper, Security Constrained Multi Objective Dynamic Economic Dispatch (SCMODED) problem considering cubic thermal cubic cost function, wind, solar penetration, cubic transmission power losses and cubic emissions cost function as objectives is first formulated. Both HVDC and HVAC lines are included in their formulation. Various approaches like probabilistic load flow (PLF), scenario based method, participation factors and Harmony Search algorithm etc. are employed in the solution process. Security and stability effects of renewable energy (RE) penetration are investigated and analyzed. The simulated results reveal that RE penetration leads to reduced cost and emissions and increased security concerns. Further, there is increased power system instability and hence increased load shedding so as to help the power system attain steady state stability. Inclusion of HVDC lines facilitates rapid and fast control to increase the transient stability limit by the action of the converter ignition angle (CIA) and converter extinction angle (CEA).展开更多
Water is one of the needs with remarkable significance to man and other living things.Water quality management is a concept based on the continuous monitoring of water quality.The monitoring scheme aims to accumulate ...Water is one of the needs with remarkable significance to man and other living things.Water quality management is a concept based on the continuous monitoring of water quality.The monitoring scheme aims to accumulate data to make decisions on water resource descriptions,identify real and emergent issues involving water pollution,formulate priorities,and plan for water quality management.The regularly considered parameters when conducting water quality monitoring are turbidity,pH,temperature,conductivity,dissolved oxygen,chemical oxygen demand,biochemical oxygen demand,ammonia,and metal ions.The usual method employed in capturing these water parameters is the manual collection and sending of samples to a laboratory for detection and analysis.However,this method is impractical in the long run because it is laborious and consumes a considerable amount of human resources.Sensors integrated into a mobile phone application interface can address this issue.This paper aims to design and implement an Internet of Things-based system comprising pH,temperature,and turbidity sensors,which are all integrated into a mobile phone application interface for a water monitoring system.This project utilizes the Bluetooth Standard(IEEE 802.15.1)for communication/transfer of data,while the water quality monitoring system relies on the pH,turbidity,and temperature of the test water.展开更多
About 60%of emissions into the earth’s atmosphere are produced by the transport sector,caused by exhaust gases from conventional internal combustion engines.An effective solution to this problem is electric mobility,...About 60%of emissions into the earth’s atmosphere are produced by the transport sector,caused by exhaust gases from conventional internal combustion engines.An effective solution to this problem is electric mobility,which significantly reduces the rate of urban pollution.The use of electric vehicles(EVs)has to be encouraged and facilitated by new information and communication technology(ICT)tools.To help achieve this goal,this paper proposes innovative services for electric vehicle users aimed at improving travel and charging experience.The goal is to provide a smart service to allow drivers to find the most appropriate charging solutions during a trip based on information such as the vehicle’s current position,battery type,state of charge,nearby charge point availability,and compatibility.In particular,the drivers are supported so that they can find and book the preferred charge option according to time availability and the final cost of the charge points(CPs).To this purpose,two virtual sensors(VSs)are designed,modeled and simulated in order to provide the users with an innovative service for smart CP searching and booking.In particular,the first VS is devoted to locate and find available CPs in a preferred area,whereas the second VS calculates the charging cost for the EV and supports the driver in the booking phase.A UML activity diagram describes VSs operations and cooperation,while a UML sequence diagram highlights data exchange between the VSs and other electromobility ecosystem actors(CP operator,EV manufacturer,etc.).Furthermore,two timed Petri Nets(TPNs)are designed to model the proposed VSs,functioning and interactions as discrete event systems.The Petri Nets are synchronized by a single larger TPN that is simulated in different use cases and scenarios to demonstrate the effectiveness of the proposed VSs.展开更多
The Nigerian power sector is faced with poorly organized billing and consumer relations management. Tariff billing and collection has been a big problem in some community in Nigeria even with the introduction of prepa...The Nigerian power sector is faced with poorly organized billing and consumer relations management. Tariff billing and collection has been a big problem in some community in Nigeria even with the introduction of prepaid meters. The process of payment is cumbersome and stressful as consumers have to go and pay in banks and then take tellers to power utility office to confirm their power bills payment before they can recharge their cards. The major purpose of this work is to design and implement a convenient, cashless, automated and transparent electricity metering, billing and payment system. This project combines the power electronic meter with a communications network which in this case is a GSM (global system for mobile) network. Remote electricity billing is a unique concept, in which the electricity board can collect the consumed units' data from consumer on mobile phone using GSM network. A unique property of this system is that, the electricity board can disconnect or reconnect consumers from remote location through the mobile phone. As this project works on GSM network, the system can be controlled from any part of the country.展开更多
The cooperative model of a multi-subject Regional Integrated Energy System(RIES)is no longer limited to the trading of traditional energy,but the trading of new energy derivatives such as Green Certificates(GC),Servic...The cooperative model of a multi-subject Regional Integrated Energy System(RIES)is no longer limited to the trading of traditional energy,but the trading of new energy derivatives such as Green Certificates(GC),Service Power(SP),and CO_(2) will be more involved in the energy allocation of the cooperative model.This study was conducted for the multi-entity RIES cooperative model considering the trading of electronics,GC,SP,and CO_(2).First,a cooperative framework including wind-photovoltaic generation system(WG),combined heat and power system(CHP),and power-carbon-hydrogen load(PCH)is proposed,and the mechanism of energy derivatives trading is also analyzed.Then,the sub-models of each agent in the cooperative model are established separately so that WG has the capability of GC generation,CHP has the capability of GC and CO_(2) absorption,and PCH can realize the effective utilization of CO_(2).Then,the WG–CHP–PCH cooperative model is established and equated into two sub-problems of cooperative benefit maximization and transaction payment negotiation,which are solved in a distributed manner by the alternating directed multiplier method(ADMM).Finally,the effectiveness of the proposed cooperative model and distributed solution is verified by simulation.The simulation results show that the WG–CHP–PCH cooperative model can substantially improve the operational efficiency of each agent and realize the efficient redistribution of energy and its derivatives.In addition,the dynamic parameter adjustment algorithm(DP)is further applied in the solving process to improve its convergence speed.By updating the step size during each iteration,the computational cost,the number of iterations,and the apparent oscillations are reduced,and the convergence performance of the algorithm is improved.展开更多
Africa is a developing economy and as such, emphasis has been placed on the achievement of revolutionary goals that will place her on a similar rank as the developed economies. Pertaining to this objective, Heads of S...Africa is a developing economy and as such, emphasis has been placed on the achievement of revolutionary goals that will place her on a similar rank as the developed economies. Pertaining to this objective, Heads of States and government all over Africa instigated the African Union (AU) Agenda 2063, which is a framework put in place to achieve a continental transformation over the next 40 years. The use of satellites has been proven to be a major influence on economic growth since it facilitates the exchange of information. Environmental hazards such as climate changes, pollution, and inefficient waste management can be classified as one of the drawbacks to achieving this economic growth we hope to accomplish. The purpose of this paper is to analyze and examine satellite communication as a tool for the attainment of an integrated, prosperous and peaceful Africa by means of combatting environmental hazards in the continent.展开更多
Micro-LEDs(μLEDs)have advantages in terms of brightness,power consumption,and response speed.In addition,they can also be used as micro-sensors implanted in the body via flexible electronic skin.One of the key techni...Micro-LEDs(μLEDs)have advantages in terms of brightness,power consumption,and response speed.In addition,they can also be used as micro-sensors implanted in the body via flexible electronic skin.One of the key techniques involved in the fabrication ofμLED-based devices is transfer printing.Although numerous methods have been proposed for transfer printing,improving the yield ofμLED arrays is still a formidable task.In this paper,we propose a novel method for improving the yield ofμLED arrays transferred by the stamping method,using an innovative design of piezoelectrically driven asymmetric micro-gripper.Traditional grippers are too large to manipulateμLEDs,and therefore two micro-sized cantilevers are added at the gripper tips.AμLED manipulation system is constructed based on the micro-gripper together with a three-dimensional positioning system.Experimental results using this system show that it can be used successfully to manipulateμLED arrays.展开更多
This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (...This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (SoC) information from its neighbors locally and adjusts the virtual impedance of the droop controller in real-time to change the current sharing. It is shown that the SoC balance of all ESUs can be achieved. Due to virtual impedance, voltage deviation of the bus occurs inevitably and increases with load power. Meanwhile, widespread of the constant power load (CPL) in the power system may cause instability. To ensure reliable operation of DESS under the proposed DSBC, the concept of the safe region is put forward. Within the safe region, DESS is stable and voltage deviation is acceptable. The boundary conditions of the safe region are derived from the equivalent model of DESS, in which stability is analyzed in terms of modified Brayton-Moser's criterion. Both simulations and hardware experiments verify the accuracy of the safe region and effectiveness of the proposed DSBC strategy.展开更多
This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by ind...This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by individually owned distributed energy resources. The scheduling problem is stated and solved with the aim of reducing the overall energy supply from the grid, by allowing users to exchange the surplus renewable energy and by optimally planning users' controllable loads. We assume that each smart home can both buy/sell energy from/to the grid taking into account time-varying non-linear pricing signals. Simultaneously, smart homes cooperate and may buy/sell locally harvested renewable energy from/to other smart homes. The resulting optimization problem is formulated as a non-convex non-linear programming problem with a coupling of decision variables in the constraints. The proposed solution is based on a novel heuristic iterative decentralized scheme algorithm that suitably extends the Alternating Direction Method of Multipliers to a non-convex and decentralized setting. We discuss the conditions that guarantee the convergence of the presented algorithm. Finally, the application of the proposed technique to a case study under several scenarios shows its effectiveness.展开更多
基金supported by the National Natural Science Foundation of China(Nos.62002206 and 62202373)the open topic of the Green Development Big Data Decision-Making Key Laboratory(DM202003).
文摘Extracting valuable information frombiomedical texts is one of the current research hotspots of concern to a wide range of scholars.The biomedical corpus contains numerous complex long sentences and overlapping relational triples,making most generalized domain joint modeling methods difficult to apply effectively in this field.For a complex semantic environment in biomedical texts,in this paper,we propose a novel perspective to perform joint entity and relation extraction;existing studies divide the relation triples into several steps or modules.However,the three elements in the relation triples are interdependent and inseparable,so we regard joint extraction as a tripartite classification problem.At the same time,fromthe perspective of triple classification,we design amulti-granularity 2D convolution to refine the word pair table and better utilize the dependencies between biomedical word pairs.Finally,we use a biaffine predictor to assist in predicting the labels of word pairs for relation extraction.Our model(MCTPL)Multi-granularity Convolutional Tokens Pairs of Labeling better utilizes the elements of triples and improves the ability to extract overlapping triples compared to previous approaches.Finally,we evaluated our model on two publicly accessible datasets.The experimental results show that our model’s ability to extract relation triples on the CPI dataset improves the F1 score by 2.34%compared to the current optimal model.On the DDI dataset,the F1 value improves the F1 value by 1.68%compared to the current optimal model.Our model achieved state-of-the-art performance compared to other baseline models in biomedical text entity relation extraction.
基金supported in part by the National Natural Science Foundation of China(No.5197707).
文摘Cooperation in energy systems is no longer limited to the distribution of electricity,and more attention is paid to the trading of green certificates(GCs).This paper proposed a cooperative method for photovoltaic(PV)and electric-to-hydrogen(EH)trading,including GC trading under risk management.First,a novel PV and EH model is established and the cooperation mechanism is analyzed.Meanwhile,PV and EH models were risk-controlled using the conditional value at risk to reduce the impact of the uncertainty of PV electricity and EH loads.Then,the PV-EH cooperative model was established based on cooperative game theory;this was then divided into two subproblems of“cooperative benefit maximization”and“transaction payment negotiation,”and the above two subproblems were solved distributively by alternating direction multiplier method(ADMM).Only energy transactions and price negotiations were conducted between the PV and EH,which can protect the privacy and confidentiality of each entity.Finally,the effectiveness of the cooperation model was verified using a practical engineering case.The simulation results show that the cooperation of the PV-EH can significantly improve the operational efficiency of each entity and the overall efficiency of the cooperation and realize the efficient redistribution of electricity and GC.
文摘The widespread usage of clean and sustainable energy sources is leading to a significant transformation of the world’s energy systems. Over-reliance on only the national grid energy system has made institutions fail to sustain energy systems. The council is only connected to the national grid electricity supply system, with diesel generators as the only alternative, which is unhealthy and unsafe. Surprisingly, even with such alternatives, power shortages have persisted despite government efforts to provide a solution to the shortages by installing numerous off-grid systems. Due to such a situation, the council would construct a sustainable energy system as a remedy. Thus, the purpose of this study was to establish critical success factors influencing the implementation of a sustainable energy system at the Inter-University Council of East Africa (IUCEA) Head Quarters, Kampala-Uganda. A cross-sectional survey design was used;a sample size of 84 participants was selected. Questionnaire survey and interview methods were utilized. The study found that the most significant (p < 0.05) critical factors in the implementation of sustainable energy in institutions are;the use of innovative technologies and infrastructure, the use of efficient zero emissions for heating and cooling, integration of renewable energy use in the existing buildings, building and renovating in an energy-efficient way, integrating regional energy systems, improving energy efficiency in the buildings, enhanced zero emission power technologies, energy efficient equipment in place and stakeholder empowerment in energy management. This study concludes that institutions like;the Inter-University Council of East Africa (IUCEA) need to clearly state policies and actions of energy management. The roles and responsibilities of each member have to be clearly stated while capturing the activities involved in energy conservation, energy security and energy efficiency.
基金supported in part by the Hong Kong Polytechnic University via the project P0038447The Science and Technology Development Fund,Macao SAR(0093/2023/RIA2)The Science and Technology Development Fund,Macao SAR(0145/2023/RIA3).
文摘AUTOMATION has come a long way since the early days of mechanization,i.e.,the process of working exclusively by hand or using animals to work with machinery.The rise of steam engines and water wheels represented the first generation of industry,which is now called Industry Citation:L.Vlacic,H.Huang,M.Dotoli,Y.Wang,P.Ioanno,L.Fan,X.Wang,R.Carli,C.Lv,L.Li,X.Na,Q.-L.Han,and F.-Y.Wang,“Automation 5.0:The key to systems intelligence and Industry 5.0,”IEEE/CAA J.Autom.Sinica,vol.11,no.8,pp.1723-1727,Aug.2024.
文摘This paper discusses telemedicine and the employment of advanced mobile technologies in smart healthcare delivery. It covers the technological advances in connected smart healthcare, including the roles of artificial intelligence, machine learning, 5G and IoT platforms, and other enabling technologies. It also presents the challenges and potential risks that could arise from delivering connected smart healthcare services. Healthcare delivery is witnessing revolutions engineered by the developments in mobile connectivity and the plethora of platforms, applications, sensors, devices, and equipment that go along with it. Human society is evolving fast in response to these technological developments, which are also pushing the connectivity-providing sector to create and adopt new waves of network technologies. Consequently, new communications technologies have been introduced into the healthcare system and many novel applications have been developed to make it easier for sharing data in various forms and volumes within health-related services. These applications have also made it possible for telemedicine to be effectively adopted. This paper provides an overview of some of the recent developments within the space of mobile connectivity and telemedicine.
基金Supported by the National Natural Science Foundation of China under Grant No.60974136
文摘In considering the characteristic of a rudder,the maneuvers of a ship were described by an unmatched uncertain nonlinear mathematic model with unknown virtual control coefficient and parameter uncertainties.In order to solve the uncertainties in the ship heading control,specifically the controller singular and paramount re-estimation problem,a new multiple sliding-mode adaptive fuzzy control algorithm was proposed by combining Nussbaum gain technology,the approximation property of fuzzy logic systems,and a multiple sliding-mode control algorithm.Based on the Lyapunov function,it was proven in theory that the controller made all signals in the nonlinear system of unmatched uncertain ship motion uniformly bounded,with tracking errors converging to zero.Simulation results show that the demonstrated controller design can track a desired course fast and accurately.It also exhibits strong robustness peculiarity in relation to system uncertainties and disturbances.
基金supported by the Fund of the National Priority Basic Research of China(2011CB209403)National Natural Science Foundation of China(Nos.51325703,51377094,51577098)
文摘One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-streamer propagation is one of most important stages in long air gap discharge. In the conductor-tower lattice configuration, we have measured the voltage, the current on the high voltage side and the electric field in the gap. While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape, the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in: the experiment. Besides, it is found that the leader velocity, width and injected charge for the branch type streamer are greater than those of a diffuse type. We propose that the phenomenon results from the high humidity, which was 15.5-16.5 g/m3 in our experiment.
基金This work was supported by SUT Research and Development Funds and by Thailand Science Research and Innovation(TSRI).In addition,this work supported by the Taif University Researchers Supporting Project number(TURSP-2020/77),Taif University,Taif,Saudi Arabia.
文摘The impact of daily emissions of gaseous and particulate pollutants of machines and industries on human health and the environment has attracted increasing concerns.This impact has significantly led to a notable increase in mortality in the highly industrialized zones.Therefore,monitoring air quality and creating public awareness are important for a safer future,which led the governments globally to investmulti-billion in policymaking and solution stratification to address the problem.This study aims to design a realtime Internet of Things low-cost air quality monitoring system.The system utilizes air quality and carbon monoxide sensors for monitoring gaseous pollutants.Moreover,the system utilizes an Arduino Nano development board equipped with a WiFi module to effectively send readings to a ThingSpeak online channel platformfor instantaneous and real-time display of air quality.The ThingSpeak uses HTTP protocols to send emails in raising awareness of poor air quality.The level of concentration is monitored graphically through channels with the help of ThingSpeak to aid remote communication.Athreshold value is set.Thus,when pollutants have become unhealthy and harmful,the system trips off an alarm,and e-mail notifications are sent to the officials.The results have shown that the work was successfully implemented a design of a low-cost air quality monitoring system using Arduino and ThingSpeak,showing that an air quality system can be implemented using a low-cost technology,Arduino and ThingSpeak.
文摘Security constrained multi area multi objective dynamic economic dispatch (SCMAMODED) with renewable energy (RE) and all the possible MTDC stability constraints is formulated for the first time. The stability merits of multi terminal DC (MTDC) tie lines as compared to the traditional HVAC forms the main objective of this paper. Probabilistic load flow (PLF) is applied to determine the system parameters while the uncertainties are modelled using Scenario Based Method (SBM). The simulation results reveal that with the use of MTDC tie lines, the frequency and voltage stability in the MAMODED with renewable energy sources (RES) are enhanced while keeping the MTDC power exchange interface nodes at secure levels.
文摘Renewable sources of energy are being integrated into the power grids due to their economic and environmental merits as compared with the traditional fossil-fuel-fired power generation. However, their significant penetration demands a thorough research in terms of system reliability, that is, security and stability. In this paper, Security Constrained Multi Objective Dynamic Economic Dispatch (SCMODED) problem considering cubic thermal cubic cost function, wind, solar penetration, cubic transmission power losses and cubic emissions cost function as objectives is first formulated. Both HVDC and HVAC lines are included in their formulation. Various approaches like probabilistic load flow (PLF), scenario based method, participation factors and Harmony Search algorithm etc. are employed in the solution process. Security and stability effects of renewable energy (RE) penetration are investigated and analyzed. The simulated results reveal that RE penetration leads to reduced cost and emissions and increased security concerns. Further, there is increased power system instability and hence increased load shedding so as to help the power system attain steady state stability. Inclusion of HVDC lines facilitates rapid and fast control to increase the transient stability limit by the action of the converter ignition angle (CIA) and converter extinction angle (CEA).
基金This work was supported by SUT Research and Development Funds and by Thailand Science Research and Innovation(TSRI).Also,this work was supported by the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University,Saudi Arabia.In addition,support by the Taif University Researchers Supporting Project number(TURSP-2020/77),Taif University,Taif,Saudi Arabia.
文摘Water is one of the needs with remarkable significance to man and other living things.Water quality management is a concept based on the continuous monitoring of water quality.The monitoring scheme aims to accumulate data to make decisions on water resource descriptions,identify real and emergent issues involving water pollution,formulate priorities,and plan for water quality management.The regularly considered parameters when conducting water quality monitoring are turbidity,pH,temperature,conductivity,dissolved oxygen,chemical oxygen demand,biochemical oxygen demand,ammonia,and metal ions.The usual method employed in capturing these water parameters is the manual collection and sending of samples to a laboratory for detection and analysis.However,this method is impractical in the long run because it is laborious and consumes a considerable amount of human resources.Sensors integrated into a mobile phone application interface can address this issue.This paper aims to design and implement an Internet of Things-based system comprising pH,temperature,and turbidity sensors,which are all integrated into a mobile phone application interface for a water monitoring system.This project utilizes the Bluetooth Standard(IEEE 802.15.1)for communication/transfer of data,while the water quality monitoring system relies on the pH,turbidity,and temperature of the test water.
基金supported by the Italian project POR Puglia FESR 2014-2020“Research for Innovation(REFIN)”(8473A73)the MOST-Sustainable Mobility National Research Center,receiving funding from the European Union Next-GenerationEU(PIANO NAZIONALE DI RIPRESA E RESILIENZA(PNRR)–MISSIONE 4COMPONENTE 2,INVESTIMENTO 1.4-D.D.103317/06/2022,CN00000023)。
文摘About 60%of emissions into the earth’s atmosphere are produced by the transport sector,caused by exhaust gases from conventional internal combustion engines.An effective solution to this problem is electric mobility,which significantly reduces the rate of urban pollution.The use of electric vehicles(EVs)has to be encouraged and facilitated by new information and communication technology(ICT)tools.To help achieve this goal,this paper proposes innovative services for electric vehicle users aimed at improving travel and charging experience.The goal is to provide a smart service to allow drivers to find the most appropriate charging solutions during a trip based on information such as the vehicle’s current position,battery type,state of charge,nearby charge point availability,and compatibility.In particular,the drivers are supported so that they can find and book the preferred charge option according to time availability and the final cost of the charge points(CPs).To this purpose,two virtual sensors(VSs)are designed,modeled and simulated in order to provide the users with an innovative service for smart CP searching and booking.In particular,the first VS is devoted to locate and find available CPs in a preferred area,whereas the second VS calculates the charging cost for the EV and supports the driver in the booking phase.A UML activity diagram describes VSs operations and cooperation,while a UML sequence diagram highlights data exchange between the VSs and other electromobility ecosystem actors(CP operator,EV manufacturer,etc.).Furthermore,two timed Petri Nets(TPNs)are designed to model the proposed VSs,functioning and interactions as discrete event systems.The Petri Nets are synchronized by a single larger TPN that is simulated in different use cases and scenarios to demonstrate the effectiveness of the proposed VSs.
文摘The Nigerian power sector is faced with poorly organized billing and consumer relations management. Tariff billing and collection has been a big problem in some community in Nigeria even with the introduction of prepaid meters. The process of payment is cumbersome and stressful as consumers have to go and pay in banks and then take tellers to power utility office to confirm their power bills payment before they can recharge their cards. The major purpose of this work is to design and implement a convenient, cashless, automated and transparent electricity metering, billing and payment system. This project combines the power electronic meter with a communications network which in this case is a GSM (global system for mobile) network. Remote electricity billing is a unique concept, in which the electricity board can collect the consumed units' data from consumer on mobile phone using GSM network. A unique property of this system is that, the electricity board can disconnect or reconnect consumers from remote location through the mobile phone. As this project works on GSM network, the system can be controlled from any part of the country.
基金supported in part by the Science and Technology Project of State Grid Corporation of China under Grant(No.52272220002T)in part by the project supported by Sichuan Provincial key research and development program of China(No.2022YFG0123)in part by Central Government Funds for Guiding Local Scientific and Technological Development of China(No.2021ZYD0042).
文摘The cooperative model of a multi-subject Regional Integrated Energy System(RIES)is no longer limited to the trading of traditional energy,but the trading of new energy derivatives such as Green Certificates(GC),Service Power(SP),and CO_(2) will be more involved in the energy allocation of the cooperative model.This study was conducted for the multi-entity RIES cooperative model considering the trading of electronics,GC,SP,and CO_(2).First,a cooperative framework including wind-photovoltaic generation system(WG),combined heat and power system(CHP),and power-carbon-hydrogen load(PCH)is proposed,and the mechanism of energy derivatives trading is also analyzed.Then,the sub-models of each agent in the cooperative model are established separately so that WG has the capability of GC generation,CHP has the capability of GC and CO_(2) absorption,and PCH can realize the effective utilization of CO_(2).Then,the WG–CHP–PCH cooperative model is established and equated into two sub-problems of cooperative benefit maximization and transaction payment negotiation,which are solved in a distributed manner by the alternating directed multiplier method(ADMM).Finally,the effectiveness of the proposed cooperative model and distributed solution is verified by simulation.The simulation results show that the WG–CHP–PCH cooperative model can substantially improve the operational efficiency of each agent and realize the efficient redistribution of energy and its derivatives.In addition,the dynamic parameter adjustment algorithm(DP)is further applied in the solving process to improve its convergence speed.By updating the step size during each iteration,the computational cost,the number of iterations,and the apparent oscillations are reduced,and the convergence performance of the algorithm is improved.
文摘Africa is a developing economy and as such, emphasis has been placed on the achievement of revolutionary goals that will place her on a similar rank as the developed economies. Pertaining to this objective, Heads of States and government all over Africa instigated the African Union (AU) Agenda 2063, which is a framework put in place to achieve a continental transformation over the next 40 years. The use of satellites has been proven to be a major influence on economic growth since it facilitates the exchange of information. Environmental hazards such as climate changes, pollution, and inefficient waste management can be classified as one of the drawbacks to achieving this economic growth we hope to accomplish. The purpose of this paper is to analyze and examine satellite communication as a tool for the attainment of an integrated, prosperous and peaceful Africa by means of combatting environmental hazards in the continent.
基金support from the Scientific Research Program of the Tianjin Education Commission(No.2019ZD08).
文摘Micro-LEDs(μLEDs)have advantages in terms of brightness,power consumption,and response speed.In addition,they can also be used as micro-sensors implanted in the body via flexible electronic skin.One of the key techniques involved in the fabrication ofμLED-based devices is transfer printing.Although numerous methods have been proposed for transfer printing,improving the yield ofμLED arrays is still a formidable task.In this paper,we propose a novel method for improving the yield ofμLED arrays transferred by the stamping method,using an innovative design of piezoelectrically driven asymmetric micro-gripper.Traditional grippers are too large to manipulateμLEDs,and therefore two micro-sized cantilevers are added at the gripper tips.AμLED manipulation system is constructed based on the micro-gripper together with a three-dimensional positioning system.Experimental results using this system show that it can be used successfully to manipulateμLED arrays.
基金supported by the National Natural Science Foundation of China under Grant 61933014 and Grant 62173243.
文摘This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (SoC) information from its neighbors locally and adjusts the virtual impedance of the droop controller in real-time to change the current sharing. It is shown that the SoC balance of all ESUs can be achieved. Due to virtual impedance, voltage deviation of the bus occurs inevitably and increases with load power. Meanwhile, widespread of the constant power load (CPL) in the power system may cause instability. To ensure reliable operation of DESS under the proposed DSBC, the concept of the safe region is put forward. Within the safe region, DESS is stable and voltage deviation is acceptable. The boundary conditions of the safe region are derived from the equivalent model of DESS, in which stability is analyzed in terms of modified Brayton-Moser's criterion. Both simulations and hardware experiments verify the accuracy of the safe region and effectiveness of the proposed DSBC strategy.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2008AA04Z214) and National Natural Science Foundation of China (2008BAF36B01)
基金supported by European Regional Development Fund in the "Apulian Technology Clusters SMARTPUGLIA 2020"Program
文摘This paper presents a decentralized control strategy for the scheduling of electrical energy activities of a microgrid composed of smart homes connected to a distributor and exchanging renewable energy produced by individually owned distributed energy resources. The scheduling problem is stated and solved with the aim of reducing the overall energy supply from the grid, by allowing users to exchange the surplus renewable energy and by optimally planning users' controllable loads. We assume that each smart home can both buy/sell energy from/to the grid taking into account time-varying non-linear pricing signals. Simultaneously, smart homes cooperate and may buy/sell locally harvested renewable energy from/to other smart homes. The resulting optimization problem is formulated as a non-convex non-linear programming problem with a coupling of decision variables in the constraints. The proposed solution is based on a novel heuristic iterative decentralized scheme algorithm that suitably extends the Alternating Direction Method of Multipliers to a non-convex and decentralized setting. We discuss the conditions that guarantee the convergence of the presented algorithm. Finally, the application of the proposed technique to a case study under several scenarios shows its effectiveness.
基金supported by the National Natural Science Foundation of China(61202369)the NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization(U1509219)